Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450786

RESUMO

Iron particles of sizes between 6 and 20 nm forming aggregates of 57 ± 17 nm were synthesized by chemical reduction of iron precursors on the surface of montmorillonite (MMT). This active MMT-Fe powder was then uniformly distributed in a linear low-density polyethylene (LLDPE) matrix by extrusion at atmospheric conditions, as confirmed by wide-angle X-ray scattering (WAXS), which also detected a partial exfoliation of the nanoclays. Thermogravimetric analysis (TGA) did not detect any significant modification of the degradation temperature between nanocomposites and active nanocomposites. 57Fe Mössbauer spectroscopy evidenced the formation of a majority of iron boride in MMT-Fe as well as in the active film containing it. The LLDPE.Fu15.MMT-Fe3.75 and LLDPE.Fu15.MMT-Fe6.25 films had oxygen-scavenging capacities of 0.031 ± 0.002 and 0.055 ± 0.009 g(O2)/g(Fe), respectively, while the neat powder had an adsorption capacity of 0.122 g(O2)/g(Fe). This result confirms that the fresh film samples were partially oxidized shortly after thermomechanical processing (60% of oxidized species according to Mössbauer spectroscopy). No significant difference in oxygen permeability was observed when MMT-Fe was added. This was related to the relatively small film surface used for measuring the permeability. The reaction-diffusion model proposed here was able to reproduce the observed data of O2 adsorption in an active nanocomposite, which validated the O2 adsorption model previously developed for dried MMT-Fe powder.

2.
Angew Chem Int Ed Engl ; 58(14): 4571-4575, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30672081

RESUMO

Recently, IrV -based perovskite-like materials were proposed as oxygen evolution reaction (OER) catalysts in acidic media with promising performance. However, iridium dissolution and surface reconstruction were observed, questioning the real active sites on the surface of these catalysts. In this work, Sr2 MIr(V) O6 (M=Fe, Co) and Sr2 Fe0.5 Ir0.5 (V) O4 were explored as OER catalysts in acidic media. Their activities were observed to be roughly equal to those previously reported for La2 LiIrO6 or Ba2 PrIrO6 . Coupling electrochemical measurements with iridium dissolution studies under chemical or electrochemical conditions, we show that the deposition of an IrOx layer on the surface of these perovskites is responsible for their OER activity. Furthermore, we experimentally reconstruct the iridium Pourbaix diagram, which will help guide future research in controlling the dissolution/precipitation equilibrium of iridium species for the design of better Ir-based OER catalysts.

3.
Dalton Trans ; 47(32): 10827-10832, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30027198

RESUMO

A little less than a decade after their quantum-chemical prediction and eventual synthesis, solid-state transition-metal carbodiimides and closely related compounds have somewhat unexpectedly emerged as energy materials. In these carbodiimides, the O2- oxide dianion has been replaced by the complex NCN2- dianion, and the outstanding properties of such materials are likely related to their metastability and their higher amount of covalency compared to related oxides. When used as anode materials in rechargeable Li- and Na-ion batteries, one finds a conversion reaction, and further improving their performance will likely involve studying the redox behavior of NCN2-, the synthesis of novel ternary carbodiimides, in particular those with redox-active transition metals, and controlling their morphology. At present, such materials serve as catalysts in photochemical water oxidation, where they outperform their oxide cousins.

4.
Angew Chem Int Ed Engl ; 55(16): 5090-5, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26989882

RESUMO

We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.

5.
Inorg Chem ; 53(23): 12396-401, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25385689

RESUMO

A single-step hydrothermal route to the preparation of the pyroxene mineral, NaFeSi2O6, is reported. The as-prepared samples are found to adopt a nanowire morphology and can be made with a yield of several hundred milligrams at a time with high purity. Synchrotron X-ray diffraction, electron microscopy, and Mössbauer spectroscopy are employed to characterize the structure and morphology. A comparison of the temperature- and field-dependent magnetic properties between the nanowire and sintered phases shows substantial differences that can likely be attributed to the reduced particle size and increased number of spins on the surface of the nanowires.

6.
Inorg Chem ; 53(19): 10129-39, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25211065

RESUMO

Iron-doped nanocrystalline particles of anatase TiO2 (denoted x% Fe-TiO2, with x the nominal [Fe] atom % in solution) have been successfully synthesized at room temperature by a controlled two-step process. Hydrolysis of titanium isopropoxide is first achieved to precipitate Ti(OH)4 species. A fine control of the pH allows one to maintain (i) soluble iron species and (ii) a sluggish solubility of Ti(OH)4 to promote a dissolution and condensation of titanium clusters incorporating iron, leading to the precipitation of iron-doped anatase TiO2. The pH does then influence both the nature and crystallinity of the final phase. After 2 months of aging at pH = 2, well-dispersed nanocrystalline iron-doped TiO2 particles have been achieved, leading to 5-6 nm particle size and offering a high surface area of ca. 280 m(2)/g. This dissolution/recrystallization process allows the incorporation of a dopant concentration of up to 7.7 atom %; the successful incorporation of iron in the structure is demonstrated by X-ray diffraction, high-resolution transmission electron microscopy, and Mössbauer spectroscopy. This entails optical-band-gap narrowing from 3.05 to 2.30 eV. The pros and cons effects of doping on the electrochemical properties of TiO2 versus lithium are herein discussed. We reveal that doping improves the power rate capability of the electrode but, in turn, deserves the electrolyte stability, leading to early formation of SEI. Finally, we highlight a beneficial effect of low iron introduction into the anatase lattice for photocatalytic applications under standard AM1.5G visible-light illumination.

7.
Inorg Chem ; 52(20): 11767-77, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24089701

RESUMO

The reaction of N-methydiethanolamine (mdeaH2), benzoic acid, FeCl3, and Ln(NO3)3·6H2O or LnCl3·xH2O yields a series of decanuclear coordination clusters, [Ln3Fe7(µ4-O)2(µ3-OH)2(mdea)7(µ-benzoate)4(N3)6]·4MeCN·H2O, where Ln = Gd(III) (1) or Tb(III) (2), and [Er3Fe7(µ4-O)2(µ3-OH)2(mdea)7(µ-benzoate)4(N3)5(MeOH)]Cl·7.5H2O·11.5MeOH (3). The isostructural compounds 1-3 all crystallize isotypically in the triclinic space group P1̅ with Z = 2, as does the previously reported dysprosium analogue 4. Six of the Fe(III) ions are pseudooctahedrally coordinated, whereas the seventh has a trigonal-bipyramidal coordination geometry. Temperature-dependent direct-current magnetic susceptibility studies indicate that intracluster antiferromagnetic interactions are dominant in 1-3. The frequency-dependent out-of-phase (χ″) alternating-current susceptibility reveals that 2 undergoes a slow relaxation of its magnetization, presumably resulting from anisotropy of the Tb(III) ions. Between 30 and 295 K, the (57)Fe Mössbauer spectra reveal paramagnetic behavior with six partially resolved quadrupole doublets, one for the trigonal-bipyramidal Fe(III) site and five for the six pseudooctahedral Fe(III) sites. The Mössbauer spectra of 2 and 3 obtained between 3 and 30 K are consistent with the presence of Fe(III) intracluster antiferromagnetic coupling with slow magnetic relaxation relative to the Larmor precession time. Further, the observed changes in the effective magnetic field values in the spectra measured at 3 K with increasing applied field are consistent with the effect of the local spin polarization along the applied magnetic field direction, a behavior reminiscent of antiparallel spin-coupled iron molecular paramagnetic systems.

8.
Inorg Chem ; 52(9): 5055-62, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23600622

RESUMO

Crystal growth, structure determination, and magnetic properties of LnCr2Al(20-x)Fe(x) (Ln = La, Gd, Yb) adopting the CeCr2Al20 structure type with space group Fd3m, a ∼ 14.5 Å, are reported. Single crystal X-ray diffraction and Mössbauer spectroscopy are employed to fully characterize the crystal structure of LnCr2Al(20-x)Fe(x) (Ln = La, Gd, Yb). LnCr2Al(20-x)Fe(x) (Ln = La, Gd, Yb) are the first pseudoternaries adopting the CeCr2Al20 structure type with a transition metal occupying the main group site. The Yb analogues are Pauli paramagnets with the Yb ion adopting an electronic configuration close to Yb(2+), while the Gd analogues show paramagnetic behavior with no magnetic order down to 3 K.

9.
J Am Chem Soc ; 134(51): 20805-11, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23194439

RESUMO

Pure micrometric antimony can be successfully used as negative electrode material in Na-ion batteries, sustaining a capacity close to 600 mAh g(-1) at a high rate with a Coulombic efficiency of 99 over 160 cycles, an extremely high capacity compared to any other compound tested against both Li and Na. The reaction mechanism with Na does not simply go through the alloying mechanism observed for Li where the intermediate species are those expected from the phase diagram. In the case of Na, the intermediate phases are mostly amorphous and could not be precisely identified. Surprisingly, we evidenced that a competition takes place at the end of the discharge of the Sb/Na cell between the formation of the hexagonal and the cubic polymorphs of Na(3)Sb, the last being described in the literature as unstable at atmospheric pressure and only synthesized under high pressure (1-9 GPa). In addition, fluoroethylene carbonate added to the electrolyte combined with an appropriate electrode formulation based on carboxymethyl cellulose, carbon black, and vapor ground carbon fibers seems to be determinant in the excellent performances of this material.

10.
J Chem Phys ; 134(17): 174507, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21548699

RESUMO

The magnetic, electronic, and Mössbauer spectral properties of [Fe(2)L(µ-OAc)(2)]ClO(4), 1, where L is the dianion of the tetraimino-diphenolate macrocyclic ligand, H(2)L, indicate that 1 is a class III mixed valence iron(II∕III) complex with an electron that is fully delocalized between two crystallographically inequivalent iron sites to yield a [Fe(2)](V) cationic configuration with a S(t) = 9∕2 ground state. Fits of the dc magnetic susceptibility between 2 and 300 K and of the isofield variable-temperature magnetization of 1 yield an isotropic magnetic exchange parameter, J, of -32(2) cm(-1) for an electron transfer parameter, B, of 950 cm(-1), a zero-field uniaxial D(9∕2) parameter of -0.9(1) cm(-1), and g = 1.95(5). In agreement with the presence of uniaxial magnetic anisotropy, ac susceptibility measurements reveal that 1 is a single-molecule magnet at low temperature with a single molecule magnetic effective relaxation barrier, U(eff), of 9.8 cm(-1). At 5.25 K the Mössbauer spectra of 1 exhibit two spectral components, assigned to the two crystallographically inequivalent iron sites with a static effective hyperfine field; as the temperature increases from 7 to 310 K, the spectra exhibit increasingly rapid relaxation of the hyperfine field on the iron-57 Larmor precession time of 5 × 10(-8) s. A fit of the temperature dependence of the average effective hyperfine field yields |D(9∕2)| = 0.9 cm(-1). An Arrhenius plot of the logarithm of the relaxation frequency between 5 and 85 K yields a relaxation barrier of 17 cm(-1).


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Cristalografia por Raios X , Elétrons , Magnetismo , Modelos Moleculares , Espectroscopia de Mossbauer
11.
Phys Chem Chem Phys ; 13(6): 2111-3, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21152579

RESUMO

The autocatalytic sonochemical reaction of Fe(CO)(5) decomposition in [BuMeIm][Tf(2)N] provides iron nanoparticles in higher yields than in tetralin. Such a difference is explained by the higher decomposition of the intermediate Fe(3)(CO)(12) according to the two-sites model of the sonochemical reactions and the specific properties of the ionic liquid.

12.
J Am Chem Soc ; 132(51): 18115-26, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21141856

RESUMO

We present a family of trigonal pyramidal iron(II) complexes supported by tris(pyrrolyl-α-methyl)amine ligands of the general formula [M(solv)(n)][(tpa(R))Fe] (M = Na, R = tert-butyl (1), phenyl (4); M = K, R = mesityl (2), 2,4,6-triisopropylphenyl (3), 2,6-difluorophenyl (5)) and their characterization by X-ray crystallography, Mössbauer spectroscopy, and high-field EPR spectroscopy. Expanding on the discovery of slow magnetic relaxation in the recently reported mesityl derivative 2, this homologous series of high-spin iron(II) complexes enables an initial probe of how the ligand field influences the static and dynamic magnetic behavior. Magnetization experiments reveal large, uniaxial zero-field splitting parameters of D = -48, -44, -30, -26, and -6.2 cm(-1) for 1-5, respectively, demonstrating that the strength of axial magnetic anisotropy scales with increasing ligand field strength at the iron(II) center. In the case of 2,6-difluorophenyl substituted 5, high-field EPR experiments provide an independent determination of the zero-field splitting parameter (D = -4.397(9) cm(-1)) that is in reasonable agreement with that obtained from fits to magnetization data. Ac magnetic susceptibility measurements indicate field-dependent, thermally activated spin reversal barriers in complexes 1, 2, and 4 of U(eff) = 65, 42, and 25 cm(-1), respectively, with the barrier of 1 constituting the highest relaxation barrier yet observed for a mononuclear transition metal complex. In addition, in the case of 1, the large range of temperatures in which slow relaxation is observed has enabled us to fit the entire Arrhenius curve simultaneously to three distinct relaxation processes. Finally, zero-field Mössbauer spectra collected for 1 and 4 also reveal the presence of slow magnetic relaxation, with two independent relaxation barriers in 4 corresponding to the barrier obtained from ac susceptibility data and to the 3D energy gap between the M(S) = ±2 and ±1 levels, respectively.


Assuntos
Complexos de Coordenação/química , Ferro/química , Magnetismo , Pirrolidinas/química , Anisotropia , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Mossbauer
13.
Inorg Chem ; 49(22): 10455-67, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20964309

RESUMO

Black prisms of UFeS(3) and UFeSe(3) have been synthesized by solid-state reactions of U, Fe, and S or Se with CsCl as a flux at 1173 K. The structure of these isostructural compounds consists of layers of edge- and corner-sharing FeS(6) or FeSe(6) octahedra that are separated by layers of face- and edge-sharing US(8) or USe(8) bicapped trigonal prisms. The isomer shifts in the iron-57 Mössbauer spectra of both UFeS(3) and UFeSe(3) are consistent with the presence of high-spin iron(II) ions octahedrally coordinated to S or Se. The XANES spectra of UFeS(3) and UFeSe(3) are consistent with uranium(IV). Single-crystal magnetic susceptibility measurements along the three crystallographic axes of UFeSe(3) reveal a substantial magnetic anisotropy with a change of easy axis from the a-axis above 40 K to the b-axis below 40 K, a change that results from competition between the iron(II) and uranium(IV) anisotropies. The temperature dependence of the magnetic susceptibility along the three axes is characteristic of two-dimensional magnetism. A small shoulder-like anomaly is observed in the magnetic susceptibilities along the a- and b-axes at 96 and 107 K, respectively. Below 107 K, the iron-57 Mössbauer spectra of UFeS(3) and UFeSe(3) show that the iron nuclei experience a magnetic hyperfine field that results from long-range magnetic ordering of at least the iron(II) magnetic moments because the field exhibits Brillouin-like behavior. Below 40 K there is no significant change in the Mössbauer spectra as a result of change in magnetic anisotropy. The complexity of the iron-57 Mössbauer spectra and the temperature and field dependencies of the magnetic properties point toward a complex long-range magnetic structure of two independent iron(II) and uranium(IV) two-dimensional sublattices. The temperature dependence of the single-crystal resistivity of UFeSe(3) measured along the a-axis reveals semiconducting behavior between 30 and 300 K with an energy gap of about 0.03 eV below the 53 K maximum in susceptibility, of about 0.05 eV between 50 and 107 K, and of 0.03 eV above 107 K; a negative magnetoresistance was observed below 60 K.

14.
Inorg Chem ; 49(13): 5912-22, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20527980

RESUMO

Polycrystalline samples of Ln(18)Li(8)Rh(5-x)Fe(x)O(39) (Ln = La, Nd; 0.5 < or = x < or = 5) have been synthesized by a solid-state method and studied by a combination of dc and ac magnetometry, neutron diffraction, and Mossbauer spectroscopy. All compositions adopt a cubic structure (space group Pm3n, a(0) approximately 12 A) based on intersecting 111 chains made up of alternating octahedral and trigonal-prismatic coordination sites. These chains occupy channels within a Ln-O framework. At low values of x, iron preferentially occupies the smaller (2a) of the two distinct octahedral sites as low-spin Fe(IV). The Rh(III) on the larger (8e) octahedral site is replaced by high-spin Fe(III). Nd-containing compositions having x > 1 show spin-glass-like behavior below approximately 5 K. La-containing compositions having x > 1 show evidence of a magnetic transition at approximately 8 K, but the nature of the transition is unclear. This contrasting behavior demonstrates that, although the structural chemistry of the two systems is essentially the same, the magnetic character of the Ln cations plays an important role in determining the properties of these compounds.

15.
Inorg Chem ; 49(2): 445-56, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20020728

RESUMO

Ln(4)FeGa(12), where Ln is Y, Tb, Dy, Ho, and Er, prepared by flux growth, crystallize with the cubic Y(4)PdGa(12) structure with the Im3m space group and with a = 8.5650(4), 8.5610(4), 8.5350(3), 8.5080(3), and 8.4760(3) A, respectively. The crystal structure consists of an iron-gallium octahedra and face-sharing rare-earth cuboctahedra of the Au(3)Cu type. Er(4)Fe(0.67)Ga(12) is iron-deficient, leading to a distortion of the octahedral and cuboctahedral environments due to the splitting of the Ga2 site into Ga2 and Ga3 sites. Further, interstitial octahedral sites that are unoccupied in Ln(4)FeGa(12) (Ln = Y, Tb, Dy, and Ho) are partially occupied by Fe2. Y(4)FeGa(12) exhibits weak itinerant ferromagnetism below 36 K. In contrast, Tb(4)FeGa(12), Dy(4)FeGa(12), Ho(4)FeGa(12), and Er(4)Fe(0.67)Ga(12) order antiferromagnetically with maxima in the molar magnetic susceptibilities at 26, 18.5, 9, and 6 K. All of the compounds exhibit metallic electric resistivity, and their iron-57 Mossbauer spectra, obtained between 4.2 and 295 K, exhibit a single-line absorption with a 4.2 K isomer shift of ca. 0.50 mm/s, a shift that is characteristic of iron in an iron-gallium intermetallic compound. A small but significant broadening in the spectral absorption line width is observed for Y(4)FeGa(12) below 40 K and results from the small hyperfine field arising from its spin-polarized itinerant electrons.

16.
Inorg Chem ; 48(19): 9345-55, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19711941

RESUMO

The reaction between N-methydiethanolamine (mdeaH(2)), benzoic acid, FeCl(3), and DyCl(3) yields a decanuclear coordination cluster, [Dy(3)Fe(7)(mu(4)-O)(2)(mu(3)-OH)(2)(mdea)(7)(mu-benzoate)(4)(N(3))(6)] x 2 H(2)O x 7 CH(3)OH (1) whose single crystal structure exhibits three and seven crystallographically distinct Dy(III) and Fe(III) ions; six of the Fe(III) ions are pseudo-octahedrally coordinated, whereas the seventh has a trigonal-bipyramidal coordination geometry. Both direct current (dc) and alternating current (ac) magnetic susceptibility studies indicate that, upon cooling, intracluster antiferromagnetic interactions are dominant in 1, yielding a ferrimagnetic spin arrangement. The out-of-phase (chi'') ac susceptibility reveals that 1 undergoes a slow relaxation of its magnetization mainly resulting from the anisotropy of the Dy(III) ions. This slow relaxation has been confirmed both by magnetization measurements on an oriented single crystal of 1 and by the observation of hysteresis loops below 1.9 K. The macroscopic magnetic studies yield an effective energy barrier, U(eff), of 33.4 K for this relaxation, a barrier that is the highest yet reported for a lanthanide(III)-Fe(III) single molecule magnet. The (57)Fe Mössbauer spectra of 1 obtained between 3 and 35 K are consistent with the presence of Fe(III) intracluster antiferromagnetic coupling with slow magnetic relaxation relative to the Larmor precession time, thus confirming, on a microscopic scale, the presence of a barrier to the magnetic relaxation below 35 K. Between 55 and 295 K the Mössbauer spectra reveal paramagnetic behavior with six partially resolved quadrupole doublets, one for the trigonal-bipyramidal Fe(III) site and five for the six pseudo-octahedral Fe(III) sites.

17.
J Phys Condens Matter ; 21(18): 186001, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21825467

RESUMO

The iron-57 Mössbauer spectra of YCoFe(3)B have been measured between 4.2 and 480 K and reveal that YCoFe(3)B exhibits an axial orientation of the iron magnetic moments below 450 K and a basal orientation above 450 K. This spin reorientation, also observed in the thermomagnetic curves, results from the different signs of the contributions to the magnetic anisotropy of the 2c and 6i sites that are occupied by iron. The neutron diffraction patterns of YCoFe(3)B have been measured at 2 K and between 290 and 770 K and have been successfully analyzed with a model compatible with the magnetic orientation obtained from the Mössbauer spectra. The hybridization between the cobalt or iron 3d orbitals and the boron 2p orbitals leads to a larger magnetic moment and hyperfine field on the 2c site as compared to the 6i site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...