Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 4: 4203, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24569599

RESUMO

In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements.


Assuntos
Condutometria/métodos , Membranas Artificiais , Microscopia de Varredura por Sonda/métodos , Nanopartículas/química , Eletricidade Estática , Óxido de Zinco/química , Condutividade Elétrica , Transporte de Elétrons , Teste de Materiais/métodos
2.
Nanotechnology ; 24(22): 225703, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23635384

RESUMO

The need to resolve the electrical properties of confined structures (CNTs, quantum dots, nanorods, etc) is becoming increasingly important in the field of electronic and optoelectronic devices. Here we propose an approach based on amplitude modulated electrostatic force microscopy to obtain measurements at small tip-sample distances, where highly nonlinear forces are present. We discuss how this improves the lateral resolution of the technique and allows probing of the electrical and surface properties. The complete force field at different tip biases is employed to derive the local work function difference. Then, by appropriately biasing the tip-sample system, short-range forces are reconstructed. The short-range component is then separated from the generic tip-sample force in order to recover the pure electrostatic contribution. This data can be employed to derive the tip-sample capacitance curve and the sample dielectric constant. After presenting a theoretical model that justifies the need for probing the electrical properties of the sample in the vicinity of the surface, the methodology is presented in detail and verified experimentally.

3.
Nanotechnology ; 23(6): 065703, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248623

RESUMO

Research on thermoelectric (TE) materials has been focused on their transport properties in order to maximize their overall performance. Mechanical properties, which are crucial for system reliability, are often overlooked. The recent development of a new class of high-performance, low-dimension thermoelectric materials calls for a better understanding of their mechanical behavior to achieve the desired system reliability. In the present study we investigate the mechanical behavior of nanostructure bulk TE material p-type Bi(x)Sb(2-x)Te(3) by means of nanoindentation and 3D finite element analysis. The Young's modulus of the material was estimated by the Oliver-Pharr (OP) method and by means of numerically assisted nanoindentation analysis yielding comparable values about 40 GPa. Enhanced hardness and yield strength can be predicted for this nanostructured material. Microstructure is studied and correlation with mechanical properties is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...