Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364511

RESUMO

The low-temperature microwave-assisted hydrothermal method was used to successfully grow pure and Al-doped ZnO (AZO) nanorod (NR) arrays on glass substrates. The combined effects of doping and pH on the structural properties, surface chemistry, and optical properties of all samples were investigated. Thermodynamic-based simulations of the growth solution were performed and a growth mechanism, that considers the effects of both the pH and Al-doping, is proposed, and discussed. Tuning the solution pH is key parameter to grow well-aligned, single crystal, highly packed, and high aspect ratio nanorod arrays. Moreover, the optical absorption in the visible range is enhanced by controlling the pH value. The PL spectra reveal a shift of the main radiative emission from the band-to-band into a transition involving deep defect levels of Zinc interstitial Zni. This shift is caused by an enhancement of the non-radiative components (phonon relaxation) at high pH values. The production of well-ordered ZnO and AZO nanorod arrays with visible-active absorption/emission centers would increase their potential use in various applications.

2.
Nanoscale Res Lett ; 7(1): 630, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23158381

RESUMO

During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport mechanism in order to explain the enhanced electrical properties of the composite. The high spatial resolution and versatility of the technique allows us to further decouple the two main contributions to the electrical transport: (1) the intrinsic resistance of the tube and (2) the tunneling resistance due to nanoscale gaps occurring between the epoxy-coated tubes along the composite. The results show that the material behaves as a conductive polymer, and the electrical transport is governed by electron tunneling at interconnecting CNT-polymer junctions. We also point out the theoretical formulation of the nanoscale electrical transport between the AFM tip and the sample in order to derive both the composite conductivity and the CNT intrinsic properties. The enhanced electrical properties of the composite are attributed to high degree of alignment, the CNT purity, and the large tube diameter which lead to low junction resistance. By controlling the tube diameter and using other polymers, the nanocomposite electrical conductivity can be improved.

3.
Nanotechnology ; 23(40): 405704, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22995850

RESUMO

Nanocomposites of aligned multi-walled carbon nanotubes (CNTs) embedded in a polymer matrix yield a unique combination of thermal and electrical properties and mechanical strength. These properties are intimately related to the composite nanostructure and to the growth and processing conditions. The alignment of the tubes, the filling fraction and the contact junction between the nanotubes are key parameters controlling the composite electrical conductivity. For this purpose, a full description of the composite nanostructure is required. Among the non-destructive scanning probe techniques, scanning spreading resistance microscopy is found to be a powerful technique in identifying the carbon nanotubes with true nanometer resolution, thus competing with SEM and TEM imaging. Additionally, the technique provides valuable information about the electrical conduction mechanism within the composite structure. Indeed, by using a controlled contact force and an appropriate model of conduction at the nanoscale, the tip-CNT contact resistance, the CNT intrinsic resistance and the CNT-epoxy-CNT resistance junction are evaluated. This latter is found to be the factor controlling the overall electrical conductivity of the composite.

4.
Rev Sci Instrum ; 83(4): 043707, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559539

RESUMO

We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

5.
J Phys Chem Lett ; 3(16): 2125-9, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26295758

RESUMO

Multifrequency atomic force microscopy holds promise as a method to provide qualitative and quantitative information about samples with high spatial resolution. Here, we provide experimental evidence of the excitation of subharmonics in ambient conditions in the regions where capillary interactions are predicted to be the mechanism of excitation. We also experimentally decouple a second mechanism for subharmonic excitation that is highly independent of environmental conditions such as relative humidity. This implies that material properties could be mapped. Subharmonic excitation could lead to experimental determination of surface water affinity in the nanoscale whenever water interactions are the mechanism of excitation.

6.
Nanoscale ; 4(3): 792-800, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159043

RESUMO

Imaging with nanoscale resolution has become routine practice with the use of scanning probe techniques. Nevertheless, quantification of material properties and processes has been hampered by the complexity of the tip-surface interaction and the dependency of the dynamics on operational parameters. Here, we propose a framework for the quantification of the coefficients of viscoelasticity, surface energy, surface energy hysteresis and elastic modulus. Quantification of these parameters at the nanoscale will provide a firm ground to the understanding and modelling of tribology and nanoscale sciences with true nanoscale resolution.

7.
Nanoscale ; 4(2): 600-6, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22143255

RESUMO

In order to explain the unique thermoelectric properties of bulk nanocomposite p-type bismuth antimony telluride, its structural and electrical properties are investigated using transmission electron microscopy (TEM) and atomic force microscopy with a conductive probe (C-AFM). The material is observed to contain both nano- and micro-sized grains with sizes varying from 10 nm to 3 µm. This unique structure promotes phonon scattering, thereby decreasing the thermal conductivity to below 1 W mK(-1) at room temperature. Moreover, the C-AFM data show that the electrical conductivity of nanosized grains is higher than the bulk value and reaches 1600 S cm(-1). This results in a moderate increment of the overall electrical conductivity, thereby increasing the figure of merit (ZT) up to 1.4 at 100 °C. In addition to demonstrating a powerful scanning probe microscopy (SPM) based investigation technique that requires minimal sample preparation, our findings contribute towards better understanding of the enhancement of thermoelectric properties of nanocomposite thermoelectric materials.


Assuntos
Bismuto/química , Microscopia de Varredura por Sonda/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Telúrio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais/métodos , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...