Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(3): 1776-1792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35073413

RESUMO

PURPOSE: Noninvasive methods to monitor carbon-ion beams in patients are desired to fully exploit the advantages of carbon-ion radiotherapy. Prompt secondary ions produced in nuclear fragmentations of carbon ions are of particular interest for monitoring purposes as they can escape the patient and thus be detected and tracked to measure the radiation field in the irradiated object. This study aims to evaluate the performance of secondary-ion tracking to detect, visualize, and localize an internal air cavity used to mimic inter-fractional changes in the patient anatomy at different depths along the beam axis. METHODS: In this work, a homogeneous head phantom was irradiated with a realistic carbon-ion treatment plan with a typical prescribed fraction dose of 3 Gy(RBE). Secondary ions were detected by a mini-tracker with an active area of 2 cm2 , based on the Timepix3 semiconductor pixel detector technology. The mini-tracker was placed 120 mm behind the center of the target at an angle of 30 degrees with respect to the beam axis. To assess the performance of the developed method, a 2-mm thick air cavity was inserted in the head phantom at several depths: in front of as well as at the entrance, in the middle, and at the distal end of the target volume. Different reconstruction methods of secondary-ion emission profile were studied using the FLUKA Monte Carlo simulation package. The perturbations in the emission profiles caused by the air cavity were analyzed to detect the presence of the air cavity and localize its position. RESULTS: The perturbations in the radiation field mimicked by the 2-mm thick cavity were found to be significant. A detection significance of at least three standard deviations in terms of spatial distribution of the measured tracks was found for all investigated cavity depths, while the highest significance (six standard deviations) was obtained when the cavity was located upstream of the tumor. For a tracker with an eight-fold sensitive area, the detection significance rose to at least nine standard deviations and up to 17 standard deviations, respectively. The cavity could be detected at all depths and its position measured within 6.5 ± 1.4 mm, which is sufficient for the targeted clinical performance of 10 mm. CONCLUSION: The presented systematic study concerning the detection and localization of small inter-fractional structure changes in a realistic clinical setting demonstrates that secondary ions carry a large amount of information on the internal structure of the irradiated object and are thus attractive to be further studied for noninvasive monitoring of carbon-ion treatments.


Assuntos
Carbono , Radioterapia com Íons Pesados , Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Humanos , Íons , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
2.
Med Phys ; 48(8): 4411-4424, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34061994

RESUMO

PURPOSE: Ion beam radiotherapy offers enhances dose conformity to the tumor volume while better sparing healthy tissue compared to conventional photon radiotherapy. However, the increased dose gradient also makes it more sensitive to uncertainties. While the most important uncertainty source is the patient itself, the beam delivery is also subject to uncertainties. Most of the proton therapy centers used cyclotrons, which deliver typically a stable beam over time, allowing a continuous extraction of the beam. Carbon-ion beam radiotherapy (CIRT) in contrast uses synchrotrons and requires a larger and energy-dependent extrapolation of the nozzle-measured positions to obtain the lateral beam positions in the isocenter, since the nozzle-to-isocenter distance is larger than for cyclotrons. Hence, the control of lateral pencil beam positions at isocenter in CIRT is more sensitive to uncertainties than in proton radiotherapy. Therefore, an independent monitoring of the actual lateral positions close to the isocenter would be very valuable and provide additional information. However, techniques capable to do so are scarce, and they are limited in precision, accuracy and effectivity. METHODS: The detection of secondary ions (charged nuclear fragments) has previously been exploited for the Bragg peak position of C-ion beams. In our previous work, we investigated for the first time the feasibility of lateral position monitoring of pencil beams in CIRT. However, the reported precision and accuracy were not sufficient for a potential implementation into clinical practice. In this work, it is shown how the performance of the method is improved to the point of clinical relevance. To minimize the observed uncertainties, a mini-tracker based on hybrid silicon pixel detectors was repositioned downstream of an anthropomorphic head phantom. However, the secondary-ion fluence rate in the mini-tracker rises up to 1.5 × 105 ions/s/cm2 , causing strong pile-up of secondary-ion signals. To solve this problem, we performed hardware changes, optimized the detector settings, adjusted the setup geometry and developed new algorithms to resolve ambiguities in the track reconstruction. The performance of the method was studied on two treatment plans delivered with a realistic dose of 3 Gy (RBE) and averaged dose rate of 0.27 Gy/s at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. The measured lateral positions were compared to reference beam positions obtained either from the beam nozzle or from a multi-wire proportional chamber positioned at the room isocenter. RESULTS: The presented method is capable to simultaneously monitor both lateral pencil beam coordinates over the entire tumor volume during the treatment delivery, using only a 2-cm2 mini-tracker. The effectivity (defined as the fraction of analyzed pencil beams) was 100%. The reached precision of (0.6 to 1.5) mm and accuracy of (0.5 to 1.2) mm are in line with the clinically accepted uncertainty for QA measurements of the lateral pencil beam positions. CONCLUSIONS: It was demonstrated that the performance of the method for a non-invasive lateral position monitoring of pencil beams is sufficient for a potential clinical implementation. The next step is to evaluate the method clinically in a group of patients in a future observational clinical study.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Carbono , Humanos , Íons , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
J Anim Ecol ; 90(6): 1525-1537, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713437

RESUMO

Structural complexity of habitats modifies trophic interactions by providing refuges and altering predator and prey behaviour. Nonlinear effects on trophic interaction strengths driven by these mechanisms may alter food web dynamics and community structure in response to habitat modifications. However, changes in functional response, the relationship between prey density and feeding rate, along habitat complexity (HC) gradients are little understood. We quantified functional responses along a HC gradient from an entirely unstructured to highly structured habitat in a freshwater system, using dragonfly larvae (Aeshna cyanea) preying on Chaoborus obscuripes larvae. To disentangle mechanisms by which changes in HC affect functional responses, we used two different approaches-a population-level and a behavioural experiment-applied an information theoretic approach to identify plausible links between HC and functional response parameters, and compared our results to previous studies. Functional response shape did not change, but we found strong evidence for nonlinear dependence of attack rate and handling time on HC in our study. Combined results from both experiments imply that attack rate increased stepwise between the unstructured and structured habitats in line with the threshold hypothesis, because the predators gained better access to the prey. Handling time was lowest at an intermediate HC level in the population-level experiment while the direct estimate of handling time did not vary with HC in the behavioural experiment. These differences point towards HC-driven changes in foraging activity and other predator and prey behaviour. Most previous studies reported stepwise decrease in attack rate in line with the threshold hypothesis or no change with increasing HC. Moreover, changes in the handling time parameter with HC appear to be relatively common but not conforming to the threshold hypothesis. Overall, increased HC appears to, respectively, weaken and strengthen trophic links in 2D and 3D predator-prey interactions. We conclude that detailed understanding of HC effects on food webs requires complementary experimental approaches across HC gradients that consider predator foraging strategies and predator and prey behaviour. Such studies can also help guide conservation efforts as addition of structural elements is frequently used for restoration of degraded aquatic habitats.


Assuntos
Odonatos , Comportamento Predatório , Animais , Ecossistema , Cadeia Alimentar , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...