Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(5): 054905, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243261

RESUMO

Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures. Here, a setup to perform such measurements is described based on the use of a pyrometer for high-temperature measurements and on a protocol based on the acquisition of cooling curves, which allows us to take into account calorimeter losses. We demonstrate that the setup permits to perform measurements under a controlled atmosphere on solid state samples up to 550 °C. It should in principle be able to perform measurements up to 900 °C. The method, uncertainties, and possible artifacts are described and analyzed in detail. The influence on losses of putting under vacuum different parts of the calorimeter is measured. To illustrate the setup possibilities, the temperature dependence of heating power is measured on four samples displaying very different behaviors. Their heating power increases or decreases with temperature, displaying temperature sensibilities ranging from -2.5 to +4.4% K-1. This setup is useful to characterize the MNPs for magnetically heated catalysis applications and to produce data that will be used to test models permitting to predict the temperature dependence of MNP heating power.

2.
J Microsc ; 269(2): 168-176, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064561

RESUMO

In situ transmission electron microscopy (TEM) of samples in a controlled gas environment allows for the real time study of the dynamical changes in nanomaterials at high temperatures and pressures up to the ambient pressure (105 Pa) with a spatial resolution close to the atomic scale. In the field of catalysis, the implementation and quantitative use of in situ procedures are fundamental for a better understanding of the behaviour of catalysts in their environments and operating conditions. By using a microelectromechanical systems (MEMS)-based atmospheric gas cell, we have studied the thermal stability and the reactivity of crystalline cobalt nanostructures with initial 'urchin-like' morphologies sustained by native surface ligands that result from their synthesis reaction. We have evidenced various behaviors of the Co nanostructures that depend on the environment used during the observations. At high temperature under vacuum or in an inert atmosphere, the migration of Co atoms towards the core of the particles is activated and leads to the formation of carbon nanostructures using as a template the initial multipods morphology. In the case of reactive environments, for example, pure oxygen, our investigation allowed to directly monitor the voids formation through the Kirkendall effect. Once the nanostructures were oxidised, it was possible to reduce them back to the metallic phase using a dihydrogen flux. Under a pure hydrogen atmosphere, the sintering of the whole structure occurred, which illustrates the high reactivity of such structures as well as the fundamental role of the present ligands as morphology stabilisers. The last type of environmental study under pure CO and syngas (i.e. a mixture of H2 :CO = 2:1) revealed the metal particles carburisation at high temperature.

3.
Chem Commun (Camb) ; 52(11): 2362-5, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26731548

RESUMO

CoPt and FePt nanostructures have been efficiently confined in carbon nanotubes (CNTs). A marked confinement effect has been evidenced, both on bimetallic nano-object shape and composition. In large diameter CNTs small Co- and Fe-rich nanoparticles are formed, while in small diameter CNTs Pt-rich nanowires are selectively produced.

4.
Angew Chem Int Ed Engl ; 40(16): 2983-6, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12203623

RESUMO

Simply decomposing InCp at room temperature in the presence of hexadecylamine leads to the formation of indium nanowires with a crystalline bct structure, a mean diameter of about 200 nm, and lengths in the micrometer range. The method can be extended to the preparation of In3 Sn nanowires of about 100 nm in diameter (a transmission electron micrograph is shown in the picture). Cp=C5 H5 (-) .

5.
Inorg Chem ; 39(4): 705-11, 2000 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-11272564

RESUMO

Several rhodium(I) complexes of the type [RhX(CO)(PePy2)], [Rh(diene)(PePy)]+, and [Rh(diene)(PePy2)]+ (PePyn = P(CH2CH2Py)nPh3-n; Py = 2-pyridyl; n = 1, 2) have been prepared. The two former are square planar; the latter are pentacoordinated for diene = tetrafluorobenzobarrelene or norbornadiene (confirmed by X-ray diffraction), but an equilibrium of 4- and 5-coordinate isomers exists in solution for diene = 1,5-cyclooctadiene. The fluxional behavior of all these complexes is studied by NMR spectroscopy. The complex [Rh(NBD)(PePy2)]PF6.Cl2CH2 crystallizes in the monoclinic space group P21/n with a = 8.455(1) A, b = 18.068(3) A, c = 19.729(3) A, beta = 99.658(3)degrees, and Z = 4. The complexes [Rh(diene)(PePy2)]+ react with CO to give the dimeric complex [Rh2(CO)2[P(CH2CH2Py)2Ph]2](BF4)2 with the pyridylphosphine acting as P,N-chelating and P,N-bridging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...