Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8019): 54-59, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839966

RESUMO

Introducing the concept of topology has revolutionized materials classification, leading to the discovery of topological insulators and Dirac-Weyl semimetals1-3. One of the most fundamental theories underpinning topological materials is the Su-Schrieffer-Heeger (SSH) model4,5, which was developed in 1979-decades before the recognition of topological insulators-to describe conducting polymers. Distinct from the vast majority of known topological insulators with two and three dimensions1-3, the SSH model predicts a one-dimensional analogue of topological insulators, which hosts topological bound states at the endpoints of a chain4-8. To establish this unique and pivotal state, it is crucial to identify the low-energy excitations stemming from bound states, but this has remained unknown in solids because of the absence of suitable platforms. Here we report unusual electronic states that support the emergent bound states in elemental tellurium, the single helix of which was recently proposed to realize an extended version of the SSH chain9,10. Using spin- and angle-resolved photoemission spectroscopy with a micro-focused beam, we have shown spin-polarized in-gap states confined to the edges of the (0001) surface. Our density functional theory calculations indicate that these states are attributed to the interacting bound states originating from the one-dimensional array of SSH tellurium chains. Helices in solids offer a promising experimental platform for investigating exotic properties associated with the SSH chain and exploring topological phases through dimensionality control.

2.
Nat Commun ; 14(1): 7396, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978297

RESUMO

Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials.

3.
Nat Commun ; 11(1): 159, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919356

RESUMO

Realization of topological superconductors (TSCs) hosting Majorana fermions is a central challenge in condensed-matter physics. One approach is to use the superconducting proximity effect (SPE) in heterostructures, where a topological insulator contacted with a superconductor hosts an effective p-wave pairing by the penetration of Cooper pairs across the interface. However, this approach suffers a difficulty in accessing the topological interface buried deep beneath the surface. Here, we propose an alternative approach to realize topological superconductivity without SPE. In a Pb(111) thin film grown on TlBiSe2, we discover that the Dirac-cone state of substrate TlBiSe2 migrates to the top surface of Pb film and obtains an energy gap below the superconducting transition temperature of Pb. This suggests that a Bardeen-Cooper-Schrieffer superconductor is converted into a TSC by the topological proximity effect. Our discovery opens a route to manipulate topological superconducting properties of materials.

4.
Sci Rep ; 6: 27266, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265402

RESUMO

Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.

5.
Nat Commun ; 6: 6547, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25761780

RESUMO

It is well known that a topologically protected gapless state appears at an interface between a topological insulator and an ordinary insulator; however, the physics of the interface between a topological insulator and a metal has largely been left unexplored. Here we report a novel phenomenon termed topological proximity effect, which occurs between a metallic ultrathin film and a three-dimensional topological insulator. We study one bilayer of bismuth metal grown on the three-dimensional topological insulator material TlBiSe2, and by using spin- and angle-resolved photoemission spectroscopy, we found evidence that the topological Dirac-cone state migrates from the surface of TlBiSe2 to the attached one-bilayer Bi. We show that such a migration of the topological state occurs as a result of strong spin-dependent hybridization of the wave functions at the interface, which is also supported by our first-principles calculations. This discovery points to a new route to manipulating the topological properties of materials.

6.
Phys Rev Lett ; 114(6): 066402, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25723232

RESUMO

To realize a one-dimensional (1D) system with strong spin-orbit coupling is a big challenge in modern physics, since the electrons in such a system are predicted to exhibit exotic properties unexpected from the 2D or 3D counterparts, while it was difficult to realize genuine physical properties inherent to the 1D system. We demonstrate the first experimental result that directly determines the purely 1D band structure by performing spin-resolved angle-resolved photoemission spectroscopy of Bi islands on a silicon surface that contains a metallic 1D edge structure with unexpectedly large Rashba-type spin-orbit coupling suggestive of the nontopological nature. We have also found a sizable out-of-plane spin polarization of the 1D edge state, consistent with our first-principles band calculations. Our result provides a new platform to realize exotic quantum phenomena at the 1D edge of the strong spin-orbit-coupling systems.

7.
Phys Rev Lett ; 115(26): 266401, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765009

RESUMO

We have performed spin- and angle-resolved photoemission spectroscopy on tungsten (110) interfaced with an ultrathin iron (Fe) layer to study an influence of ferromagnetism on the Dirac-cone-like surface-interface states. We found an unexpectedly large energy gap of 340 meV at the Dirac point, and have succeeded in switching the Dirac-fermion mass by controlling the direction of Fe spins (in plane or out of plane) through tuning the thickness of the Fe overlayer or adsorbing oxygen on it. Such a manipulation of Dirac-fermion mass via the magnetic proximity effect opens a promising platform for realizing new spintronic devices utilizing a combination of exchange and Rashba-spin-orbit interactions.

8.
Phys Rev Lett ; 110(20): 206804, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167439

RESUMO

We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

9.
Phys Rev Lett ; 109(18): 186804, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215312

RESUMO

We performed systematic spin- and angle-resolved photoemission spectroscopy of TlBi(S(1-x)Se(x))(2) which undergoes a topological phase transition at x ~ 0.5. In TlBiSe(2) (x = 1.0), we revealed a helical spin texture of Dirac-cone surface states with an intrinsic in-plane spin polarization of ~0.8. The spin polarization still survives in the gapped surface states at x > 0.5, although it gradually weakens upon approaching x = 0.5 and vanishes in the nontopological phase. No evidence for the out-of-plane spin polarization was found, irrespective of x and momentum. The present results unambiguously indicate the topological origin of the gapped Dirac surface states, and also impose a constraint on models to explain the origin of mass acquisition of Dirac fermions.

10.
Phys Rev Lett ; 108(11): 116801, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540497

RESUMO

We have performed angle-resolved photoemission spectroscopy on Pb(Bi(1-x)Sb(x))2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators. In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong topological insulator with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n type to p type. The Pb(Bi(1-x)Sb(x))2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.

11.
Nat Commun ; 3: 636, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273674

RESUMO

The three-dimensional topological insulator is a quantum state of matter characterized by an insulating bulk state and gapless Dirac cone surface states. Device applications of topological insulators require a highly insulating bulk and tunable Dirac carriers, which has so far been difficult to achieve. Here we demonstrate that Bi(2-x)Sb(x)Te(3-y)Se(y) is a system that simultaneously satisfies both of these requirements. For a series of compositions presenting bulk-insulating transport behaviour, angle-resolved photoemission spectroscopy reveals that the chemical potential is always located in the bulk band gap, whereas the Dirac cone dispersion changes systematically so that the Dirac point moves up in energy with increasing x, leading to a sign change of the Dirac carriers at x~0.9. Such a tunable Dirac cone opens a promising pathway to the development of novel devices based on topological insulators.

12.
Phys Rev Lett ; 109(23): 236804, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368240

RESUMO

We have performed angle-resolved photoemission spectroscopy on (PbSe)(5)(Bi(2)Se(3))(3m), which forms a natural multilayer heterostructure consisting of a topological insulator and an ordinary insulator. For m=2, we observed a gapped Dirac-cone state within the bulk band gap, suggesting that the topological interface states are effectively encapsulated by block layers; furthermore, it was found that the quantum confinement effect of the band dispersions of Bi(2)Se(3) layers enhances the effective bulk band gap to 0.5 eV, the largest ever observed in topological insulators. For m=1, the Dirac-like state is completely gone, suggesting the disappearance of the band inversion in the Bi(2)Se(3) unit. These results demonstrate that utilization of naturally occurring heterostructures is a new promising strategy for manipulating the topological states and realizing exotic quantum phenomena.

13.
Nat Commun ; 2: 394, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21750547

RESUMO

High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the superconducting gap develops on underdoping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors.


Assuntos
Arsenicais/química , Condutividade Elétrica , Temperatura Alta , Ferro/química , Magnetismo , Espectroscopia Fotoeletrônica
14.
Phys Rev Lett ; 106(21): 216803, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699328

RESUMO

We have performed spin- and angle-resolved photoemission spectroscopy of Bi(2)Te(3) and present the first direct evidence for the existence of the out-of-plane spin component on the surface state of a topological insulator. We found that the magnitude of the out-of-plane spin polarization on a hexagonally deformed Fermi surface of Bi(2)Te(3) reaches maximally 25% of the in-plane counterpart, while such a sizable out-of-plane spin component does not exist in the more circular Fermi surface of TlBiSe(2), indicating that the hexagonal deformation of the Fermi surface is responsible for the deviation from the ideal helical spin texture. The observed out-of-plane polarization is much smaller than that expected from the existing theory, suggesting that an additional ingredient is necessary for correctly understanding the surface spin polarization in Bi(2)Te(3).

15.
Phys Rev Lett ; 106(16): 166401, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599390

RESUMO

We have performed high-resolution spin- and angle-resolved photoemission spectroscopy of bismuth thin film on Si(111) to investigate the spin structure of surface states. Unlike the conventional Rashba splitting, the magnitude of the in-plane spin polarization is asymmetric between the two elongated surface hole pockets across the zone center. Moreover, we uncovered a giant out-of-plane spin polarization as large as the in-plane counterpart which switches the sign across the Γ-M line. We discuss the present finding in terms of the symmetry breaking and the many-body effects.

16.
J Phys Condens Matter ; 23(13): 135701, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21415479

RESUMO

The electronic structure of the Fe-based superconductor Ba(0.6)K(0.4)Fe(2)As(2) is studied by means of angle-resolved photoemission. We identify dispersive bands crossing the Fermi level forming hole-like (electron-like) Fermi surfaces (FSs) around Γ (M) with nearly nested FS pockets connected by the antiferromagnetic wavevector. Compared to band structure calculation findings, the overall bandwidth is reduced by a factor of 2 and the low energy dispersions display even stronger mass renormalization. Using an effective tight banding model, we fitted the band structure and the FSs to obtain band parameters reliable for theoretical modeling and calculation of physical quantities.


Assuntos
Eletrônica/instrumentação , Modelos Teóricos , Espectroscopia Fotoeletrônica/métodos , Elétrons
17.
Rev Sci Instrum ; 81(9): 095101, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20887002

RESUMO

We have developed an ultrahigh-resolution spin-resolved photoemission spectrometer with a highly efficient mini Mott detector and an intense xenon plasma discharge lamp. The spectrometer achieves the energy resolutions of 0.9 and 8 meV for non-spin-resolved and spin-resolved modes, respectively. Three-dimensional spin-polarization is determined by using a 90° electron deflector situated before the Mott detector. The performance of spectrometer is demonstrated by observation of a clear Rashba splitting of the Bi(111) surface states.

18.
Phys Rev Lett ; 103(4): 047002, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659391

RESUMO

We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_{2}As_{2} (transition temperature T_{c} = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface around the Brillouin-zone center is qualitatively similar to that of optimally doped Ba_{1-x}K_{x}Fe_{2}As_{2} (x = 0.4; T_{c} = 37 K), the Fermi surface topology around the zone corner (M point) is markedly different: the two electron Fermi surface pockets are completely absent due to an excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-T_{c} superconductivity of Ba_{1-x}K_{x}Fe_{2}As_{2} and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the T_{c} value in the overdoped region.

19.
Phys Rev Lett ; 102(4): 047003, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257465

RESUMO

We have performed an angle-resolved photoemission spectroscopy study of the new superconductor Ba0.6K0.4Fe2As2 in the low energy range. We report the observation of an anomaly around 25 meV in the dispersion of superconducting Ba0.6K0.4Fe2As2 samples that nearly vanishes above T_{c}. The energy scale of the related mode (13+/-2 meV) and its strong dependence on orbital and temperature indicates that it is unlikely related to phonons. Moreover, the momentum locations of the kink can be connected by the antiferromagnetic wave vector. Our results point towards an unconventional electronic origin of the mode and the superconducting pairing in the Fe-based superconductors, and strongly support the antiphase s-wave pairing symmetry.

20.
Phys Rev Lett ; 99(15): 157001, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995204

RESUMO

Angle resolved photoemission on underdoped Bi2Sr2CaCu2O8 reveals that the magnitude and d-wave anisotropy of the superconducting state energy gap are independent of temperature all the way up to T{c}. This lack of T variation of the entire k-dependent gap is in marked contrast to mean field theory. At T{c} the point nodes of the d-wave gap abruptly expand into finite length "Fermi arcs." This change occurs within the width of the resistive transition, and thus the Fermi arcs are not simply thermally broadened nodes but rather a unique signature of the pseudogap phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...