Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Pediatr Res ; 95(1): 129-134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37591926

RESUMO

BACKGROUND: Inhomogeneous lung aeration is a significant contributor to preterm lung injury. EIT detects inhomogeneous aeration in the research setting. Whether LUS detects inhomogeneous aeration is unknown. The aim was to determine whether LUS detects regional inhomogeneity identified by EIT in preterm lambs. METHODS: LUS and EIT were simultaneously performed on mechanically ventilated preterm lambs. LUS images from non-dependent and dependent regions were acquired and reported using a validated scoring system and computer-assisted quantitative LUS greyscale analysis (Q-LUSMGV). Regional inhomogeneity was calculated by observed over predicted aeration ratio from the EIT reconstructive model. LUS scores and Q-LUSMGV were compared with EIT aeration ratios using one-way ANOVA. RESULTS: LUS was performed in 32 lambs (~125d gestation, 128 images). LUS scores were greater in upper anterior (non-dependent) compared to lower lateral (dependent) regions of the left (3.4 vs 2.9, p = 0.1) and right (3.4 vs 2.7, p < 0.0087). The left and right upper regions also had greater LUS scores compared to right lower (3.4 vs 2.7, p < 0.0087) and left lower (3.7 vs 2.9, p = 0.1). Q-LUSMGV yielded similar results. All LUS findings corresponded with EIT regional differences. CONCLUSION: LUS may have potential in measuring regional aeration, which should be further explored in human studies. IMPACT: Inhomogeneous lung aeration is an important contributor to preterm lung injury, however, tools detecting inhomogeneous aeration at the bedside are limited. Currently, the only tool clinically available to detect this is electrical impedance tomography (EIT), however, its use is largely limited to research. Lung ultrasound (LUS) may play a role in monitoring lung aeration in preterm infants, however, whether it detects inhomogeneous lung aeration is unknown. Visual LUS scores and mean greyscale image analysis using computer assisted quantitative LUS (Q-LUSMGV) detects regional lung aeration differences when compared to EIT. This suggests LUS reliably detects aeration inhomogeneity warranting further investigation in human trials.


Assuntos
Lesão Pulmonar , Animais , Ovinos , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Impedância Elétrica , Pulmão/diagnóstico por imagem , Carneiro Doméstico
2.
Viruses ; 15(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38005952

RESUMO

(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Ovinos , Palivizumab , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L594-L603, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37727901

RESUMO

Tidal ventilation is essential in supporting the transition to air-breathing at birth, but excessive tidal volume (VT) is an important factor in preterm lung injury. Few studies have assessed the impact of specific VT levels on injury development. Here, we used a lamb model of preterm birth to investigate the role of different levels of VT during positive pressure ventilation (PPV) in promoting aeration and initiating early lung injury pathways. VT was delivered as 1) 7 mL/kg throughout (VTstatic), 2) begun at 3 mL/kg and increased to a final VT of 7 mL/kg over 3 min (VTinc), or 3) commenced at 7 mL/kg, decreased to 3 mL/kg, and then returned to 7 mL/kg (VTalt). VT, inflating pressure, lung compliance, and aeration were similar in all groups from 4 min, as was postmortem histology and lung lavage protein concentration. However, transient decrease in VT in the VTalt group caused increased ventilation heterogeneity. Following TMT-based quantitative mass spectrometry proteomics, 1,610 proteins were identified in the lung. Threefold more proteins were significantly altered with VTalt compared with VTstatic or VTinc strategies. Gene set enrichment analysis identified VTalt specific enrichment of immune and angiogenesis pathways and VTstatic enrichment of metabolic processes. Our finding of comparable lung physiology and volutrauma across VT groups challenges the paradigm that there is a need to rapidly aerate the preterm lung at birth. Increased lung injury and ventilation heterogeneity were identified when initial VT was suddenly decreased during respiratory support at birth, further supporting the benefit of a gentle VT approach.NEW & NOTEWORTHY There is little evidence to guide the best tidal volume (VT) strategy at birth. In this study, comparable aeration, lung mechanics, and lung morphology were observed using static, incremental, and alternating VT strategies. However, transient reduction in VT was associated with ventilation heterogeneity and inflammation. Our results suggest that rapidly aerating the preterm lung may not be as clinically critical as previously thought, providing clinicians with reassurance that gently supporting the preterm lung maybe permissible at birth.

4.
Am J Respir Crit Care Med ; 208(5): 589-599, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276583

RESUMO

Rationale: Inflation is essential for aeration at birth, but current inflating pressure settings are without an evidence base. Objectives: To determine the role of inflating pressure (ΔP), and its relationship with positive end-expiratory pressure (PEEP), in initiating early lung injury pathways in the preterm lamb lung. Methods: Preterm (124 to 127 d) steroid-exposed lambs (n = 45) were randomly allocated (8-10 per group) to 15 minutes of respiratory support with placental circulation and 20 or 30 cm H2O ΔP, with an initial high PEEP (maximum, 20 cm H2O) recruitment maneuver known to facilitate aeration (dynamic PEEP), and compared with dynamic PEEP with no ΔP or 30 cm H2O ΔP and low (4 cm H2O) PEEP. Lung mechanics and aeration were measured throughout. After an additional 30 minutes of apneic placental support, lung tissue and bronchoalveolar fluid were analyzed for regional lung injury, including proteomics. Measurements and Main Results: The 30 cm H2O ΔP and dynamic PEEP strategies resulted in quicker aeration and better compliance but higher tidal volumes (often >8 ml/kg, all P < 0.0001; mixed effects) and injury. ΔP 20 cm H2O with dynamic PEEP resulted in the same lung mechanics and aeration, but less energy transmission (tidal mechanical power), as ΔP 30 cm H2O with low PEEP. Dynamic PEEP without any tidal inflations resulted in the least lung injury. Use of any tidal inflating pressures altered metabolic, coagulation and complement protein pathways within the lung. Conclusions: Inflating pressure is essential for the preterm lung at birth, but it is also the primary mediator of lung injury. Greater focus is needed on strategies that identify the safest application of pressure in the delivery room.


Assuntos
Lesão Pulmonar , Animais , Feminino , Gravidez , Pulmão , Lesão Pulmonar/etiologia , Placenta , Respiração com Pressão Positiva/métodos , Ovinos , Carneiro Doméstico , Volume de Ventilação Pulmonar
5.
Arch Dis Child Fetal Neonatal Ed ; 108(1): 51-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35750468

RESUMO

BACKGROUND: Effective lung protective ventilation requires reliable, real-time estimation of lung volume at the bedside. Neonatal clinicians lack a readily available imaging tool for this purpose. OBJECTIVE: To determine the ability of lung ultrasound (LUS) of the dependent region to detect real-time changes in lung volume, identify opening and closing pressures of the lung, and detect pulmonary hysteresis. METHODS: LUS was performed on preterm lambs (n=20) during in vivo mapping of the pressure-volume relationship of the respiratory system using the super-syringe method. Electrical impedance tomography was used to derive regional lung volumes. Images were blindly graded using an expanded scoring system. The scores were compared with total and regional lung volumes, and differences in LUS scores between pressure increments were calculated. RESULTS: Changes in LUS scores correlated moderately with changes in total lung volume (r=0.56, 95% CI 0.47-0.64, p<0.0001) and fairly with right whole (r=0.41, CI 0.30-0.51, p<0.0001), ventral (r=0.39, CI 0.28-0.49, p<0.0001), central (r=0.41, CI 0.31-0.52, p<0.0001) and dorsal (r=0.38, CI 0.27-0.49, p<0.0001) regional lung volumes. The pressure-volume relationship of the lung exhibited hysteresis in all lambs. LUS was able to detect hysteresis in 17 (85%) lambs. The greatest changes in LUS scores occurred at the opening and closing pressures. CONCLUSION: LUS was able to detect large changes in total and regional lung volume in real time and correctly identified opening and closing pressures but lacked the precision to detect small changes in lung volume. Further work is needed to improve precision prior to translation to clinical practice.


Assuntos
Pulmão , Tórax , Ovinos , Animais , Medidas de Volume Pulmonar , Pulmão/diagnóstico por imagem , Ultrassonografia/métodos
6.
Pediatr Res ; 93(5): 1226-1232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35974157

RESUMO

BACKGROUND: The impact of different respiratory strategies at birth on the preterm lung is well understood; however, concerns have been raised that lung recruitment may impede cerebral haemodynamics. This study aims to examine the effect of three different ventilation strategies on carotid blood flow, carotid artery oxygen content and carotid oxygen delivery. METHODS: 124-127-day gestation apnoeic intubated preterm lambs studied as part of a larger programme primarily assessing lung injury were randomised to positive pressure ventilation with positive end-expiratory pressure (PEEP) 8 cmH2O (No-RM; n = 12), sustained inflation (SI; n = 15) or dynamic PEEP strategy (DynPEEP; maximum PEEP 14 or 20 cmH2O, n = 41) at birth, followed by 90 min of standardised ventilation. Haemodynamic data were continuously recorded, with intermittent arterial blood gas analysis. RESULTS: Overall carotid blood flow measures were comparable between strategies. Except for mean carotid blood flow that was significantly lower for the SI group compared to the No-RM and DynPEEP groups over the first 3 min (p < 0.0001, mixed effects model). Carotid oxygen content and oxygen delivery were similar between strategies. Maximum PEEP level did not alter cerebral haemodynamic measures. CONCLUSIONS: Although there were some short-term variations in cerebral haemodynamics between different PEEP strategies and SI, these were not sustained. IMPACT: Different pressure strategies to facilitate lung aeration at birth in preterm infants have been proposed. There is minimal information on the effect of lung recruitment on cerebral haemodynamics. This is the first study that compares the effect of sustained lung inflation and dynamic and static positive end-expiratory pressure on cerebral haemodynamics. We found that the different ventilation strategies did not alter carotid blood flow, carotid oxygen content or carotid oxygen delivery. This preclinical study provides some reassurance that respiratory strategies designed to focus on lung aeration at birth may not impact cerebral haemodynamics in preterm neonates.


Assuntos
Recém-Nascido Prematuro , Pulmão , Recém-Nascido , Humanos , Animais , Ovinos , Animais Recém-Nascidos , Carneiro Doméstico , Hemodinâmica , Oxigênio , Artérias Carótidas
7.
Pediatr Res ; 93(6): 1591-1598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36167816

RESUMO

BACKGROUND: Lung ultrasound (LUS) may not detect small, dynamic changes in lung volume. Mean greyscale measurement using computer-assisted image analysis (Q-LUSMGV) may improve the precision of these measurements. METHODS: Preterm lambs (n = 40) underwent LUS of the dependent or non-dependent lung during static pressure-volume curve mapping. Total and regional lung volumes were determined using the super-syringe technique and electrical impedance tomography. Q-LUSMGV and gold standard measurements of lung volume were compared in 520 images. RESULTS: Dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.60, 95% CI 0.51-0.67) and fairly with right whole (rho = 0.39, 0.27-0.49), central (rho = 0.38, 0.27-0.48), ventral (rho = 0.41, 0.31-0.51) and dorsal regional lung volumes (rho = 0.32, 0.21-0.43). Non-dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.57, 0.48-0.65) and fairly with right whole (rho = 0.43, 0.32-0.52), central (rho = 0.46, 0.35-0.55), ventral (rho = 0.36, 0.25-0.47) and dorsal lung volumes (rho = 0.36, 0.25-0.47). All correlation coefficients were statistically significant. Distinct inflation and deflation limbs, and sonographic pulmonary hysteresis occurred in 95% of lambs. The greatest changes in Q-LUSMGV occurred at the opening and closing pressures. CONCLUSION: Q-LUSMGV detected changes in total and regional lung volume and offers objective quantification of LUS images, and may improve bedside discrimination of real-time changes in lung volume. IMPACT: Lung ultrasound (LUS) offers continuous, radiation-free imaging that may play a role in assessing lung recruitment but may not detect small changes in lung volume. Mean greyscale image analysis using computer-assisted quantitative LUS (Q-LUSMGV) moderately correlated with changes in total and regional lung volume. Q-LUSMGV identified opening and closing pressure and pulmonary hysteresis in 95% of lambs. Computer-assisted image analysis may enhance LUS estimation of lung recruitment at the bedside. Future research should focus on improving precision prior to clinical translation.


Assuntos
Pulmão , Tomografia Computadorizada por Raios X , Ovinos , Animais , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar/métodos , Ultrassonografia
8.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L464-L472, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997273

RESUMO

Positive end-expiratory pressure (PEEP) is critical to the preterm lung at birth, but the optimal PEEP level remains uncertain. The objective of this study was to determine the effect of maximum PEEP levels at birth on the physiological and injury response in preterm lambs. Steroid-exposed preterm lambs (124-127 days gestation; n = 65) were randomly assigned from birth to either 1) positive pressure ventilation (PPV) at 8 cmH2O PEEP or 3-min dynamic stepwise PEEP strategy (DynPEEP), with either 2) 20 cmH2O maximum PEEP (10 PEEP second steps) or 3) 14 cmH2O maximum PEEP (20-s steps), all followed by standardized PPV for 90 min. Lung mechanics, gas exchange, regional ventilation and aeration (electrical impedance tomography), and histological and molecular measures of lung injury were compared between groups. Dynamic compliance was greatest using a maximum 20 cmH2O (DynPEEP). There were no differences in gas exchange, end-expiratory volume, and ventilator requirements. Regional ventilation became more uniform with time following all PEEP strategies. For all groups, gene expression of markers of early lung injury was greater in the gravity nondependent lung, and inversely related to the magnitude of PEEP, being lowest in the 20 cmH2O DynPEEP group overall. PEEP levels had no impact on lung injury in the dependent lung. Transient high maximum PEEP levels using dynamic PEEP strategies may confer more lung protection at birth.


Assuntos
Lesão Pulmonar , Animais , Animais Recém-Nascidos , Respiração com Pressão Positiva/métodos , Respiração , Mecânica Respiratória/fisiologia , Ovinos , Carneiro Doméstico
9.
Front Pharmacol ; 11: 1291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973520

RESUMO

OBJECTIVE: Current prevention and/or treatment options for respiratory syncytial virus (RSV) infections are limited as no vaccine is available. Prophylaxis with palivizumab is very expensive and requires multiple intramuscular injections over the RSV season. Here we present proof-of-concept data using nebulized palivizumab delivery as a promising new approach for the prevention or treatment of severe RSV infections, documenting both aerosol characteristics and pulmonary deposition patterns in the lungs of lambs. DESIGN: Prospective animal study. SETTING: Biosecurity Control Level 2-designated large animal research facility at the Murdoch Children's Research Institute, Melbourne, Australia. SUBJECTS: Four weaned Border-Leicester/Suffolk lambs at 5 months of age. INTERVENTIONS: Four lambs were administered aerosolized palivizumab conjugated to Tc-99m, under gaseous anesthesia, using either the commercially available AeroNeb Go® or the investigational HYDRA device, placed in-line with the inspiratory limb of a breathing circuit. Lambs were scanned in a single-photon emission computed tomography (SPECT/CT) scanner in the supine position during the administration procedure. MEASUREMENTS AND MAIN RESULTS: Both the HYDRA and AeroNeb Go® produced palivizumab aerosols in the 1-5 µm range with similar median (geometric standard deviation and range) aerosol droplet diameters for the HYDRA device (1.84 ± 1.40 µm, range = 0.54-5.41µm) and the AeroNeb Go® (3.07 ± 1.56 µm, range = 0.86-10 µm). Aerosolized palivizumab was delivered to the lungs at 88.79-94.13% of the total aerosolized amount for all lambs, with a small proportion localized to either the trachea or stomach. No difference between devices were found. Pulmonary deposition ranged from 6.57 to 9.25% of the total dose of palivizumab loaded in the devices, mostly in the central right lung. CONCLUSIONS: Aerosolized palivizumab deposition patterns were similar in all lambs, suggesting a promising approach in the control of severe RSV lung infections.

10.
Front Pediatr ; 7: 325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497582

RESUMO

Background: Preterm birth is associated with abnormal lung architecture, and a reduction in pulmonary function related to the degree of prematurity. A thorough understanding of the impact of gestational age on lung microarchitecture requires reproducible quantitative analysis of lung structure abnormalities. The objectives of this study were (1) to use quantitative histological software (ImageJ) to map morphological patterns of injury resulting from delivery of an identical ventilation strategy to the lung at varying gestational ages and (2) to identify associations between gestational age-specific morphological alterations and key functional outcomes. Method: Lung morphology was compared after 60 min of a standardized ventilation protocol (40 cm H2O sustained inflation and then volume-targeted positive pressure ventilation with positive end-expiratory pressure 8 cm H2O) in lambs at different gestations (119, 124, 128, 133, 140d) representing the spectrum of premature developmental lung states and the term lung. Age-matched controls were compared at 124 and 128d gestation. Automated and manual functions of Image J were used to measure key histological features. Correlation analysis compared morphological and functional outcomes in lambs aged ≤128 and >128d. Results: In initial studies, unventilated lung was indistinguishable at 124 and 128d. Ventilated lung from lambs aged 124d gestation exhibited increased numbers of detached epithelial cells and lung tissue compared with 128d lambs. Comparing results from saccular to alveolar development (120-140d), lambs aged ≤124d exhibited increased lung tissue, average alveolar area, and increased numbers of detached epithelial cells. Alveolar septal width was increased in lambs aged ≤128d. These findings were mirrored in the measures of gas exchange, lung mechanics, and molecular markers of lung injury. Correlation analysis confirmed the gestation-specific relationships between the histological assessments and functional measures in ventilated lambs at gestation ≤128 vs. >128d. Conclusion: Image J allowed rapid, quantitative assessment of alveolar morphology, and lung injury in the preterm lamb model. Gestational age-specific patterns of injury in response to delivery of an identical ventilation strategy were identified, with 128d being a transition point for associations between morphological alterations and functional outcomes. These results further support the need to develop individualized respiratory support approaches tailored to both the gestational age of the infant and their underlying injury response.

11.
Arch Dis Child Fetal Neonatal Ed ; 104(6): F587-F593, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31498776

RESUMO

BACKGROUND: The influence of pressure strategies to promote lung aeration at birth on the subsequent physiological response to exogenous surfactant therapy has not been investigated. OBJECTIVES: To compare the effect of sustained inflation (SI) and a dynamic positive end-expiratory pressure (PEEP) manoeuvre at birth on the subsequent physiological response to exogenous surfactant therapy in preterm lambs. METHODS: Steroid-exposed preterm lambs (124-127 days' gestation; n=71) were randomly assigned from birth to either (1) positive-pressure ventilation (PPV) with no recruitment manoeuvre; (2) SI until stable aeration; or (3) 3 min dynamic stepwise PEEP strategy (maximum 14-20 cmH2O; dynamic PEEP (DynPEEP)), followed by PPV for 60 min using a standardised protocol. Surfactant (200 mg/kg poractant alfa) was administered at 10 min. Dynamic compliance, gas exchange and regional ventilation and aeration characteristics (electrical impedance tomography) were measured throughout and compared between groups, and with a historical group (n=38) managed using the same strategies without surfactant. RESULTS: Compliance increased after surfactant only in the DynPEEP group (p<0.0001, repeated measures analysis of variance), being 0.17 (0.10, 0.23) mL/kg/cmH2O higher at 60 min than the SI group. An SI resulted in the least uniform aeration, and unlike the no-recruitment and DynPEEP groups, the distribution of aeration and tidal ventilation did not improve with surfactant. All groups had similar improvements in oxygenation post-surfactant compared with the corresponding groups not treated with surfactant. CONCLUSIONS: A DynPEEP strategy at birth may improve the response to early surfactant therapy, whereas rapid lung inflation with SI creates non-uniform aeration that appears to inhibit surfactant efficacy.


Assuntos
Surfactantes Pulmonares/farmacologia , Respiração Artificial/métodos , Animais , Animais Recém-Nascidos , Impedância Elétrica , Respiração com Pressão Positiva , Troca Gasosa Pulmonar , Surfactantes Pulmonares/administração & dosagem , Distribuição Aleatória , Mecânica Respiratória , Ovinos
12.
Am J Respir Crit Care Med ; 200(5): 608-616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730759

RESUMO

Rationale: The preterm lung is susceptible to injury during transition to air breathing at birth. It remains unclear whether rapid or gradual lung aeration at birth causes less lung injury.Objectives: To examine the effect of gradual and rapid aeration at birth on: 1) the spatiotemporal volume conditions of the lung; and 2) resultant regional lung injury.Methods: Preterm lambs (125 ± 1 d gestation) were randomized at birth to receive: 1) tidal ventilation without an intentional recruitment (no-recruitment maneuver [No-RM]; n = 19); 2) sustained inflation (SI) until full aeration (n = 26); or 3) tidal ventilation with an initial escalating/de-escalating (dynamic) positive end-expiratory pressure (DynPEEP; n = 26). Ventilation thereafter continued for 90 minutes at standardized settings, including PEEP of 8 cm H2O. Lung mechanics and regional aeration and ventilation (electrical impedance tomography) were measured throughout and correlated with histological and gene markers of early lung injury.Measurements and Main Results: DynPEEP significantly improved dynamic compliance (P < 0.0001). An SI, but not DynPEEP or No-RM, resulted in preferential nondependent lung aeration that became less uniform with time (P = 0.0006). The nondependent lung was preferential ventilated by 5 minutes in all groups, with ventilation only becoming uniform with time in the No-RM and DynPEEP groups. All strategies generated similar nondependent lung injury patterns. Only an SI caused greater upregulation of dependent lung gene markers compared with unventilated fetal controls (P < 0.05).Conclusions: Rapidly aerating the preterm lung at birth creates heterogeneous volume states, producing distinct regional injury patterns that affect subsequent tidal ventilation. Gradual aeration with tidal ventilation and PEEP produced the least lung injury.


Assuntos
Lesão Pulmonar/terapia , Nascimento Prematuro/fisiopatologia , Respiração Artificial/métodos , Animais , Animais Recém-Nascidos , Feminino , Humanos , Recém-Nascido , Masculino , Modelos Animais , Gravidez , Fatores de Proteção , Ovinos , Fatores de Tempo
13.
Neuromodulation ; 21(7): 669-675, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29498773

RESUMO

BACKGROUND: Transcutaneous electrical stimulation (TES) using interferential current (IFC) is a new therapeutic treatment for constipation. Clinical studies show that TES-IFC for 3-6 months improves colonic transit, but it is not clear if short-term stimulation affects transit or the effect requires longer to develop. The aim of this study was to determine if TES-IFC for only four days affects oral-rectal transit time in healthy pigs. METHODS: Twenty-two 4-5-week old large white female piglets had transit studies during week 4 and week 5 by placing a capsule containing 18 radiopaque plastic markers in the esophagus under anesthetic followed by x-rays at 6, 30, 54, and 78 hours. Animals were randomly assigned to active or control groups. The active group received TES for 30 min daily for four days. Interferential current was applied through four electrodes (4 × 4 cm), with two para-spinal just below the last rib and two on the belly at the same level. Stimulation was at 4000 Hz and 4080-4160 Hz with currents crossing through the abdominal cavity. RESULTS: Whole bowel transit times ranged from 7.7 to 72.2 hours, stomach transit from <1 to 63 hours, and bowel with rectum transit time from 5 to 53 hours. Transit times were the same for the control (median 28.4 hours) and TES-IFC (23.0 hours) groups in the prestimulation and stimulation weeks (control 23.0, TES-IFC 19.8 hours) with no change within or between groups. CONCLUSION: Four days of half-hour TES-IFC daily in healthy 5-week-old piglets did not change oral-rectal transit time.


Assuntos
Abdome/inervação , Trânsito Gastrointestinal/fisiologia , Boca/fisiologia , Reto/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Abdome/diagnóstico por imagem , Animais , Feminino , Boca/diagnóstico por imagem , Boca/inervação , Distribuição Aleatória , Reto/diagnóstico por imagem , Reto/inervação , Suínos , Fatores de Tempo
14.
Pediatr Crit Care Med ; 18(9): e428-e434, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28742723

RESUMO

OBJECTIVES: To determine the short-term tolerance, efficacy, and lung deposition of supraglottic atomized surfactant in spontaneously breathing lambs receiving continuous positive airway pressure. DESIGN: Prospective, randomized animal study. SETTING: Animal research laboratory. SUBJECTS: Twenty-two preterm lambs on continuous positive airway pressure (132 ± 1 d gestational age). INTERVENTIONS: Animals receiving continuous positive airway pressure via binasal prongs at 8 cm H2O were randomized to receive atomized surfactant at approximately 60-minute of life (atom; n = 15) or not (control; n = 7). The atom group received 200 mg/kg of poractant alfa (Curosurf; Chiesi Farmaceutici SpA, Parma, Italy) over 45 minutes via a novel atomizer located in the upper pharynx that synchronized surfactant delivery with the inspiratory phase. MEASUREMENTS AND MAIN RESULTS: Arterial blood gas, regional distribution of tidal ventilation (electrical impedance tomography), and carotid blood flow were recorded every 15 minutes until 90 minutes after stabilizing on continuous positive airway pressure. Gas exchange, respiratory rate, and hemodynamic variables, including carotid blood flow, remained stable during surfactant treatment. There was a significant improvement in arterial alveolar ratio after surfactant delivery in the atom group (p < 0.05; Sidak posttests), while there was no difference in PaCO2. Electrical impedance tomography data showed a more uniform pattern of ventilation in the atom group. In the atom group, the median (interquartile range) deposition of surfactant in the lung was 32% (22-43%) of the delivered dose, with an even distribution between the right and the left lungs. CONCLUSIONS: In our model of spontaneously breathing lambs receiving CPAP, supraglottic atomization of Curosurf via a novel device was safe, improved oxygenation and ventilation homogeneity compared with CPAP only, and provided a relatively large lung deposition suggesting clinical utility.


Assuntos
Produtos Biológicos/administração & dosagem , Pressão Positiva Contínua nas Vias Aéreas , Fosfolipídeos/administração & dosagem , Surfactantes Pulmonares/administração & dosagem , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Administração por Inalação , Aerossóis , Animais , Animais Recém-Nascidos , Produtos Biológicos/uso terapêutico , Terapia Combinada , Feminino , Inalação , Masculino , Nebulizadores e Vaporizadores , Faringe , Fosfolipídeos/uso terapêutico , Estudos Prospectivos , Surfactantes Pulmonares/uso terapêutico , Distribuição Aleatória , Ovinos , Resultado do Tratamento
15.
Pediatr Res ; 82(4): 712-720, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28604757

RESUMO

BackgroundCurrent sustained lung inflation (SI) approaches use uniform pressures and durations. We hypothesized that gestational-age-related mechanical and developmental differences would affect the time required to achieve optimal lung aeration, and resultant lung volumes, during SI delivery at birth in lambs.Methods49 lambs, in five cohorts between 118 and 139 days of gestation (term 142 d), received a standardized 40 cmH2O SI, which was delivered until 10 s after lung volume stability (optimal aeration) was visualized on real-time electrical impedance tomography (EIT), or to a maximum duration of 180 s. Time to stable lung aeration (Tstable) within the whole lung, gravity-dependent, and non-gravity-dependent regions, was determined from EIT recordings.ResultsTstable was inversely related to gestation (P<0.0001, Kruskal-Wallis test), with the median (range) being 229 (85,306) s and 72 (50,162) s in the 118-d and 139-d cohorts, respectively. Lung volume at Tstable increased with gestation from a mean (SD) of 20 (17) ml/kg at 118 d to 56 (13) ml/kg at 139 d (P=0.002, one-way ANOVA). There were no gravity-dependent regional differences in Tstable or aeration.ConclusionsThe trajectory of aeration during an SI at birth is influenced by gestational age in lambs. An understanding of this may assist in developing SI protocols that optimize lung aeration for all infants.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/terapia , Ventilação Pulmonar , Respiração Artificial/métodos , Respiração , Animais , Animais Recém-Nascidos , Impedância Elétrica , Idade Gestacional , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar/métodos , Modelos Biológicos , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/fisiopatologia , Carneiro Doméstico , Fatores de Tempo , Tomografia
16.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L32-L41, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881405

RESUMO

Respiratory transition at birth involves rapidly clearing fetal lung liquid and preventing efflux back into the lung while aeration is established. We have developed a sustained inflation (SIOPT) individualized to volume response and a dynamic tidal positive end-expiratory pressure (PEEP) (open lung volume, OLV) strategy that both enhance this process. We aimed to compare the effect of each with a group managed with PEEP of 8 cmH2O and no recruitment maneuver (No-RM), on gas exchange, lung mechanics, spatiotemporal aeration, and lung injury in 127 ± 1 day preterm lambs. Forty-eight fetal-instrumented lambs exposed to antenatal steroids were ventilated for 60 min after application of the allocated strategy. Spatiotemporal aeration and lung mechanics were measured with electrical impedance tomography and forced-oscillation, respectively. At study completion, molecular and histological markers of lung injury were analyzed. Mean (SD) aeration at the end of the SIOPT and OLV groups was 32 (22) and 38 (15) ml/kg, compared with 17 (10) ml/kg (180 s) in the No-RM (P = 0.024, 1-way ANOVA). This translated into better oxygenation at 60 min (P = 0.047; 2-way ANOVA) resulting from better distal lung tissue aeration in SIOPT and OLV. There was no difference in lung injury. Neither SIOPT nor OLV achieved homogeneous aeration. Histological injury and mRNA biomarker upregulation were more likely in the regions with better initial aeration, suggesting volutrauma. Tidal ventilation or an SI achieves similar aeration if optimized, suggesting that preventing fluid efflux after lung liquid clearance is at least as important as fluid clearance during the initial inflation at birth.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/fisiopatologia , Animais , Animais Recém-Nascidos , Complacência (Medida de Distensibilidade) , Impedância Elétrica , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Oxigênio/metabolismo , Pressão , Respiração , Respiração Artificial , Mecânica Respiratória/fisiologia , Ovinos , Volume de Ventilação Pulmonar
18.
Pediatr Res ; 80(1): 92-100, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954481

RESUMO

BACKGROUND: Aerosolization of exogenous surfactant remains a challenge. This study is aimed to evaluate the efficacy of atomized poractant alfa (Curosurf) administered with a novel atomizer in preterm lambs with respiratory distress syndrome. METHODS: Twenty anaesthetized lambs, 127 ± 1 d gestational age, (mean ± SD) were instrumented before birth and randomized to receive either (i) positive pressure ventilation without surfactant (Control group), (ii) 200 mg/kg of bolus instilled surfactant (Bolus group) at 10 min of life or (iii) 200 mg/kg of atomized surfactant (Atomizer group) over 60 min from 10 min of life. All lambs were ventilated for 180 min with a standardized protocol. Lung mechanics, regional lung compliance (electrical impedance tomography), and carotid blood flow (CBF) were measured with arterial blood gas analysis. RESULTS: Dynamic compliance and oxygenation responses were similar in the Bolus and Atomizer groups, and both better than Control by 180 min (all P < 0.05; two-way ANOVA). Both surfactant groups demonstrated more homogeneous regional lung compliance throughout the study period. There were no differences in CBFConclusion:In a preterm lamb model, atomized surfactant resulted in similar gas exchange and mechanics as bolus administration. This study suggests evaluation of supraglottic atomization with this system when noninvasive support is warranted.


Assuntos
Produtos Biológicos/administração & dosagem , Produtos Biológicos/uso terapêutico , Fosfolipídeos/administração & dosagem , Fosfolipídeos/uso terapêutico , Surfactantes Pulmonares/administração & dosagem , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Animais , Animais Recém-Nascidos , Velocidade do Fluxo Sanguíneo , Gasometria , Feminino , Hemodinâmica , Concentração de Íons de Hidrogênio , Pulmão/fisiologia , Masculino , Nebulizadores e Vaporizadores , Oxigênio/química , Pressão , Troca Gasosa Pulmonar , Distribuição Aleatória , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Ovinos , Tensoativos , Fatores de Tempo
19.
Pediatr Res ; 79(6): 916-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26866905

RESUMO

BACKGROUND: To describe the interrelationship between antenatal steroids, exogenous surfactant, and two approaches to lung recruitment at birth on oxygenation and respiratory system compliance (Cdyn) in preterm lambs. METHODS: Lambs (n = 63; gestational age 127 ± 1 d) received either surfactant at 10-min life (Surfactant), antenatal corticosteroids (Steroid), or neither (Control). Within each epoch lambs were randomly assigned to a 30-s 40 cmH2O sustained inflation (SI) or an initial stepwise positive end-expiratory pressure (PEEP) open lung ventilation (OLV) maneuver at birth. All lambs then received the same management for 60-min with alveolar-arterial oxygen difference (AaDO2) and Cdyn measured at regular time points. RESULTS: Overall, the OLV strategy improved Cdyn and AaDO2 (all epochs except Surfactant) compared to SI (all P < 0.05; two-way ANOVA). Irrespective of strategy, Cdyn was better in the Steroid group in the first 10 min (all P < 0.05). Thereafter, Cdyn was similar to Steroid epoch in the OLV + Surfactant, but not SI + Surfactant group. OLV influenced the effect of steroid and surfactant (P = 0.005) on AaDO2 more than SI (P = 0.235). CONCLUSIONS: The antenatal state of the lung influences the type and impact of a recruitment maneuver at birth. The effectiveness of surfactant maybe enhanced using PEEP-based time-dependent recruitment strategies rather than approaches solely aimed at initial lung liquid clearance.


Assuntos
Oxigênio/fisiologia , Mecânica Respiratória/efeitos dos fármacos , Esteroides/uso terapêutico , Corticosteroides/uso terapêutico , Animais , Animais Recém-Nascidos , Feminino , Complacência Pulmonar/efeitos dos fármacos , Masculino , Respiração com Pressão Positiva , Surfactantes Pulmonares/uso terapêutico , Sistema Respiratório , Ovinos , Carneiro Doméstico
20.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1138-49, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26408555

RESUMO

A sustained first inflation (SI) at birth may aid lung liquid clearance and aeration, but the impact of SI duration relative to the volume-response of the lung is poorly understood. We compared three SI strategies: 1) variable duration defined by attaining volume equilibrium using real-time electrical impedance tomography (EIT; SIplat); 2) 30 s beyond equilibrium (SIlong); 3) short 30-s SI (SI30); and 4) positive pressure ventilation without SI (no-SI) on spatiotemporal aeration and ventilation (EIT), gas exchange, lung mechanics, and regional early markers of injury in preterm lambs. Fifty-nine fetal-instrumented lambs were ventilated for 60 min after applying the allocated first inflation strategy. At study completion molecular and histological markers of lung injury were analyzed. The time to SI volume equilibrium, and resultant volume, were highly variable; mean (SD) 55 (34) s, coefficient of variability 59%. SIplat and SIlong resulted in better lung mechanics, gas exchange and lower ventilator settings than both no-SI and SI30. At 60 min, alveolar-arterial difference in oxygen was a mean (95% confidence interval) 130 (13, 249) higher in SI30 vs. SIlong group (two-way ANOVA). These differences were due to better spatiotemporal aeration and tidal ventilation, although all groups showed redistribution of aeration towards the nondependent lung by 60 min. Histological lung injury scores mirrored spatiotemporal change in aeration and were greatest in SI30 group (P < 0.01, Kruskal-Wallis test). An individualized volume-response approach to SI was effective in optimizing aeration, homogeneous tidal ventilation, and respiratory outcomes, while an inadequate SI duration had no benefit over positive pressure ventilation alone.


Assuntos
Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Animais Recém-Nascidos , Feminino , Pulmão/patologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva , Gravidez , Nascimento Prematuro , Carneiro Doméstico , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...