Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Thromb Haemost ; 15(4): 774-784, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28109047

RESUMO

Essentials Inhibitors of protein disulfide isomerase (PDI) have been considered a new antithrombotic class. CxxC is a PDI-targeted peptide that has been previously shown to inhibit its reductase activity. CxxC binds to surface PDI and inhibits ADP- and thrombin-evoked platelet activation and aggregation. CxxC binds to Cys400 on CGHC redox motif of PDI a' domain, a site for PDI prothrombotic activity. SUMMARY: Background Protein disulfide isomerase (PDI) plays a major role in platelet aggregation, and its inhibitors have emerged as novel antithrombotic drugs. In previous work, we designed a peptide based on a PDI redox motif (CGHC) that inhibited both PDI reductase activity and PDI-modulated superoxide generation by neutrophil Nox2. Thus, we hypothesized that this peptide would also inhibit platelet aggregation by association with surface PDI. Methods Three peptides were used: CxxC, containing the PDI redox motif; Scr, presenting a scrambled sequence of the same residues and AxxA, with cysteines replaced by alanine. These peptides were tested under platelet aggregation and flow cytometry protocols to identify their possible antiplatelet activity. We labeled membrane free thiol and electrospray ionization liquid chromatography tandem mass spectrometry to test for an interaction. Results CxxC decreased platelet aggregation in a dose-dependent manner, being more potent at lower agonist concentrations, whereas neither AxxA nor Scr peptides exerted any effect. CxxC decreased aIIbb3 activation, but had no effect on the other markers. CxxC also decreased cell surface PDI pulldown without interfering with the total thiol protein content. Finally, we detected the addition of one CxxC molecule to reduced PDI through binding to Cys400 through mass spectrometry. Interestingly, CxxC did not react with oxidized PDI. Discussion CxxC has consistently shown its antiplatelet effects, both in PRP and washed platelets, corroborated by decreased aIIbb3 activation. The probable mechanism of action is through a mixed dissulphide bond with Cys400 of PDI, which has been shown to be essential for PDI's actions. Conclusion In summary, our data support antiplatelet activity for CxxC through binding to Cys400 in the PDI a0 domain, which can be further exploited as a model for sitedriven antithrombotic agent development.


Assuntos
Inibidores da Agregação Plaquetária/química , Pró-Colágeno-Prolina Dioxigenase/química , Isomerases de Dissulfetos de Proteínas/química , Alanina/química , Motivos de Aminoácidos , Plaquetas/metabolismo , Domínio Catalítico , Cisteína/química , Dissulfetos , Humanos , Oxirredução , Peptídeos/química , Ativação Plaquetária , Agregação Plaquetária , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína
2.
J Appl Microbiol ; 110(1): 364-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21091593

RESUMO

AIMS: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. METHODS AND RESULTS: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5-thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high-affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose-grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. CONCLUSION: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. SIGNIFICANCE AND IMPACT OF THE STUDY: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.


Assuntos
Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico/genética , Fermentação , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...