Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Reprod Domest Anim ; 59(7): e14663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990011

RESUMO

The present study was conducted to investigate the global proteome of 8-day-old equine blastocysts. Follicular dynamics of eight adult mares were monitored by ultrasonography and inseminated 24 h after the detection of a preovulatory follicle. Four expanded blastocysts were recovered, pooled, and subjected to protein extraction and mass spectrometry. Protein identification was conducted based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, and PepExplorer). Enrichment analysis was performed using g:Profiler, Panther, and String platforms. After the elimination of identification redundancies among search tools (at three levels, based on identifiers, peptides, and cross-database mapping), 1977 proteins were reliably identified in the samples of equine embryos. Proteomic analysis unveiled robust metabolic activity in the 8-day equine embryo, highlighted by an abundance of proteins engaged in key metabolic pathways like the TCA cycle, ATP biosynthesis, and glycolysis. The prevalence of chaperones among highly abundant proteins suggests that regulation of protein folding, and degradation is a key process during embryo development. These findings pave the way for developing new strategies to improve equine embryo media and optimize in vitro fertilization techniques.


Assuntos
Blastocisto , Proteoma , Animais , Cavalos/embriologia , Feminino , Blastocisto/metabolismo , Desenvolvimento Embrionário , Estudos Prospectivos , Proteômica , Fertilização in vitro/veterinária
2.
J Antimicrob Chemother ; 79(1): 112-122, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37966053

RESUMO

BACKGROUND: The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES: Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS: An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS: K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS: Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Peptídeos Antimicrobianos , Proteômica , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
3.
An Acad Bras Cienc ; 95(suppl 1): e20201317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585963

RESUMO

Learning to anticipate events based on the predictive relationship between an action and an outcome (operant conditioning) is a form of associative learning shared by humans and most of other living beings, including invertebrates. Several behavioral studies on the mechanisms of operant conditioning have included Melipona quadrifasciata, a honey bee that is easily manipulated due to lack of sting. In this work, brain proteomes of Melipona bees trained using operant conditioning and untrained (control) bees were compared by two-dimensional gel electrophoresis analysis within pI range of 3-10 and 4-7; in order to find proteins specifically related to this type of associative learning.One protein was detected with differential protein abundance in the brains of trained bees, when compared to not trained ones, through computational gel imaging and statistical analysis. This protein was identified by peptide mass fingerprinting and MS/MS peptide fragmentation using a MALDI-TOF/TOF mass spectrometer as one isoform of arginine kinase monomer, apparently dephosphorylated. Brain protein maps were obtained by 2-DE (Two-dimensional gel electrophoresis) from a total proteins and phosphoproteins extract of the bee Melipona quadrifasciata. One isoform of arginine kinase, probably a dephosphorylated isoform, was significantly more abundant in the brain of trained bees using operant conditioning. Arginine kinase has been reported as an important enzyme of the energy releasing process in the visual system of the bee, but it may carry out additional and unexpected functions in the bee brain for learning process.


Assuntos
Arginina Quinase , Espectrometria de Massas em Tandem , Humanos , Abelhas , Animais , Proteômica , Encéfalo
4.
Front Oncol ; 12: 833068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814389

RESUMO

Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.

5.
Data Brief ; 43: 108433, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35859787

RESUMO

Here we describe the proteome of the fungus Hemileia vastatrix by label free mass spectrometry (LC-MS/MS). H. vastatrix is the causal agent of coffee rust disease, causing great economic losses in this crop. The objective of our work was to identify H. vastatrix proteins potentially involved in host colonization and infection, by exploring the shotgun proteomics approach. A total of 742 proteins were identified and are associated with several crucial molecular functions, biological processes, and cellular components. The proteins identified contribute to a better understanding of the metabolism of the fungus and may help identify target proteins for the development of specific drugs in order to control coffee rust disease. All data can be accessed at the Centre for Computational Mass Spectrometry - MassIVE MSV000087665 -https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=cc71ad75f767451abe72dd1ce0019387.

6.
J Proteomics ; 241: 104223, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33845181

RESUMO

A comparative proteomic analysis between two near-isogenic rice lines, displaying a resistant and susceptible phenotype upon infection with Magnaporthe oryzae was performed. We identified and validated factors associated with rice disease susceptibility, representing a flourishing source toward a more resolute rice-blast resistance. Proteome profiles were remarkably different during early infection (12 h post-inoculation), revealing several proteins with increased abundance in the compatible interaction. Potential players of rice susceptibility were selected and gene expression was evaluated by RT-qPCR. Gene Ontology analysis disclosed susceptibility gene-encoded proteins claimed to be involved in fungus sustenance and suppression of plant immunity, such as sucrose synthase 4-like, serpin-ZXA-like, nudix hydrolase15, and DjA2 chaperone protein. Two other candidate genes, picked from a previous transcriptome study, were added into our downstream analysis including pyrabactin resistant-like 5 (OsPYL5), and rice ethylene-responsive factor 104 (OsERF104). Further, we validated their role in susceptibility by Transient-Induced Gene Silencing (TIGS) using short antisense oligodeoxyribonucleotides that resulted in a remarkable reduction of foliar disease symptoms in the compatible interaction. Therefore, we successfully employed shotgun proteomics and antisense-based gene silencing to prospect and functionally validate rice potential susceptibility factors, which could be further explored to build rice-blast resistance. SIGNIFICANCE: R gene-mediated disease resistance is race-specific and often not durable in the field. More recently, advancements in new breeding techniques (NBTs) have made plant disease susceptibility genes (S-genes) a new target to build a broad spectrum and more durable resistance, hence an alternative source to R-genes in breeding programs. We successfully coupled shotgun proteomics and gene silencing tools to prospect and validate new rice-bast susceptibility genes that can be further exploited toward a more resolute blast disease resistance.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Resistência à Doença/genética , Inativação Gênica , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica
7.
Reprod Domest Anim ; 56(4): 586-603, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33460477

RESUMO

The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan (http://www.targetscan.org) and mIRBase (http://www.mirbase.org) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.


Assuntos
Embrião de Mamíferos/química , Proteoma/análise , Carneiro Doméstico/embriologia , Animais , Feminino , Inseminação Artificial/veterinária , Masculino , MicroRNAs/genética , Proteoma/genética , Carneiro Doméstico/genética , Carneiro Doméstico/metabolismo
8.
J Proteomics ; 233: 104080, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33338687

RESUMO

Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.


Assuntos
Interleucina-4 , Periodontite Periapical , Animais , Inflamação , Camundongos , Proteômica
9.
Brain Behav Immun ; 92: 90-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242651

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.


Assuntos
Peróxido de Hidrogênio , Transportadores de Ácidos Monocarboxílicos , Animais , Febre/induzido quimicamente , Lipopolissacarídeos , Mitocôndrias , Ácido Pirúvico , Ratos
10.
Front Mol Neurosci ; 12: 307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920538

RESUMO

Cytoglobin (Cygb) is a hexacoordinate protein, associated with the transport of oxygen, nitric oxide scavenging, tumor suppression and protection against oxidative stress and inflammation. This protein is expressed in brain areas including the preoptic area (POA) of the anterior hypothalamus, the region responsible for the regulation of body temperature. In this study, we show that Cygb is upregulated in the rat hypothalamus 2.5 h and 5 h after intravenous administration of lipopolysaccharide (LPS). We investigated the effect of treatment with Cygb in POA primary cultures stimulated with LPS for 4 h. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were measured and the results showed that Cygb reduced the concentrations of both cytokines. We further observed a decrease in immunoreactivity of the inflammatory transcription factor nuclear factor-κB (NF-κB), but not NF-IL6 and STAT3, in the nucleus of Cygb-treated POA cells. These findings suggest that Cygb attenuates the secretion of IL-6 and TNF-α in LPS-stimulated POA primary cultures via inhibition of the NF-κB signaling pathway, indicating that this protein might play an important role in the control of neuroinflammation and fever.

11.
J Proteomics ; 187: 182-199, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30056254

RESUMO

Fever is a brain-mediated increase in body temperature mainly during inflammatory or infectious challenges. Although there is considerable data regarding the inflammation pathways involved in fever, metabolic alterations necessary to orchestrate the complex inflammatory response are not totally understood. We performed proteomic analysis of rat hypothalamus using label-free LC-MS/MS in a model of fever induced by lipopolysaccharide (LPS) or prostaglandin E2 (PGE2). In total, 7021 proteins were identified. As far as we know, this is the largest rat hypothalamus proteome dataset available to date. Pathway analysis showed proteins from both stimuli associated with inflammatory and metabolic pathways. Concerning metabolic pathways, rats exposed to LPS or PGE2 presented lower relative abundance of proteins involved in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Mitochondrial function may also be altered by both stimuli because significant downregulation of several proteins was found, mainly in complexes I and IV. LPS was able to induce downregulation of important proteins in the enzymatic antioxidant system, thereby contributing to oxidative stress. The results offered comprehensive information about fever responses and helped to reveal new insights into proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during systemic LPS and central PGE2 administration. SIGNIFICANCE: The evolutionary persistence of fever, despite the elevated cost for maintenance of this response, suggests that elevation in core temperature may represent an interesting strategy for survival. Fever response is achieved through the integrated behavioral, physiological, immunological and biochemical processes that determine the balance between heat generation and elimination. The development of such complex response arouses interest in studying how the cell metabolism responds or even contributes to promote fever. Our results offered comprehensive information about fever responses, including metabolic and inflammatory pathways, providing new insights into candidate proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during fever induced by systemic LPS and central PGE2 perturbation.


Assuntos
Dinoprostona , Febre/induzido quimicamente , Febre/metabolismo , Hipotálamo/metabolismo , Lipopolissacarídeos , Proteômica/métodos , Animais , Cromatografia Líquida , Febre/patologia , Hipotálamo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Ratos , Ratos Wistar , Coloração e Rotulagem , Espectrometria de Massas em Tandem
12.
Free Radic Res ; 52(3): 351-361, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29308684

RESUMO

Fever is a regulated increase in body temperature and a component of the acute-phase response, triggered mainly after the invasion of pathogens in the body. Reactive oxygen species (ROS) are generated during the physiological and pathological processes, and can act as both signalling molecules as well as promoters of oxidative stress. Male Wistar rats, pretreated with oral doses of acetaminophen, celecoxib, dipyrone, or ibuprofen 30 min before an intravenous lipopolysaccharide (LPS) or sterile saline injection, showed a reduced febrile response in all animals tested. The formation of ROS in the fresh blood, liver, brown adipose tissue (BAT), and hypothalamus of febrile and antipyretic-treated animals was assessed by electron paramagnetic resonance using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH). While the CM• concentrations remained unaltered in the blood samples examined 5 h after the induction of fever, we found increased CM• levels in the liver (in µM, saline: 290 ± 42; LPS: 512 ± 34), BAT (in µM, saline: 509 ± 79, LPS: 855 ± 79), and hypothalamus (in µM, saline: 292 ± 35; LPS: 467 ± 8) at the same time point. Importantly, none of the antipyretics were seen to alter the CM• accumulation profile. Data from this study suggest that there is an increased formation of ROS in the different tissues during fever, which may cause oxidative stress, and that the antipyretics tested do not interfere with ROS production.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Febre/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Espécies Reativas de Oxigênio/sangue , Animais , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
13.
J Proteomics ; 180: 88-98, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29155091

RESUMO

Plasmodium mature sexual cycle occurs in the vector mosquitoes and ensures the transmission to a new host. Gametogenesis takes place within minutes in the vector midgut. Gametocytes have to complete a deep nuclear reorganization, quick differentiation, and in the case of male gametocytes, intracytoplasmic flagellum assembly that results in free-swimming microgametes required for macrogamete fertilization. In efforts to improve our knowledge of molecular mechanisms involved in gamete morphogenesis, we carried out a nanoLC/MSMS based quantitative proteomic analysis throughout the xanthurenic acid-induced gametogenesis of the rodent parasite P. berghei. Time-course analyses were performed 7 and 15min after gametogenesis induction. From 2617 iTRAQ-labelled peptides, 49 proteins were found differentially abundant. Proteins related to RNA translation, DNA, and protein biosynthesis were most prominent and strongly regulated. The energetic metabolic pathway, glycolysis, environmental stress response, RNA/protein biosynthesis, mitosis and axoneme formation, both related to tubulin-associated cytoskeleton dynamic, were predominant regulated cell processes at protein level during the differentiation. Our results also include 26 phosphoproteins in gametocytes/gametes. This first iTRAQ-based proteomic time course analysis of Plasmodium gamete development sheds light on the biological protein orchestration within gametogenesis. SIGNIFICANCE: Malaria is one of the most serious and widespread parasitic diseases that affected humans in medicine history. The increasing emergence of resistance of parasites from Plasmodium genus to the available antimalarial drugs and the absence of efficient vaccines require an urgent need of development of new therapeutic strategies to fight against that disease. The sexual reproduction is a key step of Plasmodium life cycle and constitutes an attractive target for the development of new therapeutic approaches since it would control malaria based on an inhibition of the parasite transmission to Anopheles, and then to humans. Male and female gamete formation (gametogenesis) is thus a biological event that is determinant for the perpetuation of the parasite in which drastic morphological and metabolic changes occur in a short time interval, resulting in the production of 8 male gametes from a male gametocyte, and fertilization of the female gamete. Development of such transmission-blocking strategies required in deep understanding of the molecular and cellular events associated to gametogenesis. Despite several studies, our understanding on gametogenesis is still incomplete and requires further investigations. This work is the first large-scale quantitative proteomic insight into the P. berghei gamete morphogenesis providing valuable time course data. Plasmodium gametogenesis clearly requires regulation of expression and phosphorylation of proteins belonging to different metabolic pathways and functions, in order to produce mature male and female gametes.


Assuntos
Gametogênese/fisiologia , Células Germinativas/metabolismo , Estágios do Ciclo de Vida/fisiologia , Plasmodium berghei/metabolismo , Proteômica , Proteínas de Protozoários/metabolismo , Animais , Feminino , Camundongos , Mosquitos Vetores/parasitologia
14.
Front Chem ; 4: 42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872839

RESUMO

The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture-derived trypomastigotes (Y strain) were used to characterize the exoproteome of the infective bloodstream life form. Proteins released into the serum-free culture medium after 3 h of incubation were harvested and digested with trypsin. NanoLC-MS/MS analysis resulted in the identification of 540 proteins, the largest set of released proteins identified to date in Trypanosoma spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non-classical pathways, and involved in host-cell infection. Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite's enhanced mechanisms for adhesion, invasion, and internalization of different host-cell types, and escape from immune defenses.

15.
Front Chem ; 4: 40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790611

RESUMO

The central nervous system is responsible for an array of cognitive functions such as memory, learning, language, and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enabled the identification and quantification of thousands of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

16.
Protein Pept Lett ; 22(12): 1066-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26369951

RESUMO

It is estimated that several million people are currently infected worldwide by the protozoan parasite, Trypanosoma cruzi, which causes Chagas disease. After mammalian host infection, a fundamental event is the differentiation from infective trypomastigotes into replicative amastigotes (amastigogenesis) inside host-cells. To unravel the particularities of both forms, it is essential to identify molecules presented in each form. Since T. cruzi gene expression regulation occurs mainly at posttranscriptional level, a proteomic approach is appropriate. Due to intrinsic difficulties with performing 2-DE in the alkaline pH range, there are no reports on 2-DE-based comparative proteome analysis of T. cruzi mammalianstage forms that focus on alkaline polypeptides. Here, we performed a comparative proteome analysis between tissue culture- derived trypomastigotes and extracellular amastigote-like cells using conditions optimized for the 6-11 pH range followed by identification by MALDI-TOF/TOF technology. The alkaline 2-DE maps from both forms show that proteins with a pI above 7.0 were not underrepresented (= 65% of proteins detected). Moreover the differences in protein expression between the Human-hosted T. cruzi forms corroborated previous proteomic studies and corresponded to their biological traits.


Assuntos
Proteoma/análise , Proteoma/fisiologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/fisiologia , Trypanosoma cruzi/química , Trypanosoma cruzi/crescimento & desenvolvimento , Doença de Chagas/parasitologia , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Interações Hospedeiro-Parasita , Humanos , Concentração de Íons de Hidrogênio , Proteoma/química , Proteoma/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo
17.
Photochem Photobiol ; 91(2): 411-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25443662

RESUMO

Low-level laser (light) therapy has been used before exercise to increase muscle performance in both experimental animals and in humans. However, uncertainty exists concerning the optimum time to apply the light before exercise. The mechanism of action is thought to be stimulation of mitochondrial respiration in muscles, and to increase adenosine triphosphate (ATP) needed to perform exercise. The goal of this study was to investigate the time course of the increases in mitochondrial membrane potential (MMP) and ATP in myotubes formed from C2C12 mouse muscle cells and exposed to light-emitting diode therapy (LEDT). LEDT employed a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 near-infrared (850 ± 10 nm, 50 mW) delivering 28 mW cm(2) for 90 s (2.5 J cm(2)) with analysis at 5 min, 3 h, 6 h and 24 h post-LEDT. LEDT-6 h had the highest MMP, followed by LEDT-3 h, LEDT-24 h, LEDT-5 min and Control with significant differences. The same order (6 h > 3 h > 24 h > 5 min > Control) was found for ATP with significant differences. A good correlation was found (r = 0.89) between MMP and ATP. These data suggest an optimum time window of 3-6 h for LEDT stimulate muscle cells.


Assuntos
Trifosfato de Adenosina/agonistas , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/efeitos da radiação , Fibras Musculares Esqueléticas/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fatores de Tempo
18.
PLoS Negl Trop Dis ; 8(12): e3384, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521296

RESUMO

BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8ß+ effector cells that expressed TCRγδ, vß1 and vß2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.


Assuntos
Doenças Autoimunes/prevenção & controle , Transplante de Medula Óssea , Cardiomiopatia Chagásica/prevenção & controle , Doença de Chagas/terapia , Animais , Apoptose , Galinhas/genética , DNA de Cinetoplasto/genética , Rejeição de Enxerto , Imunização , Mutação , Miocárdio/patologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia
19.
J Proteome Res ; 13(8): 3530-41, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978697

RESUMO

Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work addressed the analysis of the plasma membrane (PM) subproteome from T. cruzi human-hosted life stages, trypomastigote and axenic amastigote, by two complementary PM protein enrichment techniques followed by identification using an LC-MS/MS approach. The results revealed an extensive repertoire of proteins in the PM subproteomes, including enzymes that might be suitable candidates for drug intervention. The comparison of the cell surface proteome among the life forms revealed some potentially stage-specific enzymes, although the majority was shared by both stages. Bioinformatic analysis showed that the vast majority of the identified proteins are membrane-derived and/or possess predicted transmembrane domains. They are mainly involved in host cell infection, protein adhesion, cell signaling, and the modulation of mammalian host immune response. Several virulence factors and proteins potentially capable of acting at a number of metabolic pathways of the host and also to regulate cell differentiation of the parasite itself were also found.


Assuntos
Estágios do Ciclo de Vida/genética , Proteínas de Membrana/genética , Proteômica/métodos , Trypanosoma cruzi/genética , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Cromatografia de Afinidade , Cromatografia Líquida/métodos , Biologia Computacional , Descoberta de Drogas/métodos , Humanos , Espectrometria de Massas em Tandem/métodos , Trypanosoma cruzi/metabolismo
20.
Proteomics ; 12(17): 2716-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22745025

RESUMO

Trichoderma harzianum is a mycoparasitic filamentous fungus that produces and secretes a wide range of extracellular hydrolytic enzymes used in cell wall degradation. Due to its potential in biomass conversion, T. harzianum draws great attention from biofuel and biocontrol industries and research. Here, we report an extensive secretome analysis of T. harzianum. The fungus was grown on cellulose medium, and its secretome was analyzed by a combination of enzymology, 2DE, MALDI-MS and -MS/MS (Autoflex II), and LC-MS/MS (LTQ-Orbitrap XL). A total of 56 proteins were identified using high-resolution MS. Interestingly, although cellulases were found, the major hydrolytic enzymes secreted in the cellulose medium were chitinases and endochitinases, which may reflect the biocontrol feature of T. harzianum. The glycoside hydrolase family, including chitinases (EC 3.2.1.14), endo-N-acetylglucosaminidases (EC 3.2.1.96), hexosaminidases (EC 3.2.1.52), galactosidases (EC 3.2.1.23), xylanases (EC 3.2.1.8), exo-1,3-glucanases (EC 3.2.1.58), endoglucanases (EC 3.2.1.4), xylosidases (EC 3.2.1.37), α-L-arabinofuranosidase (EC 3.2.1.55), N-acetylhexosaminidases (EC 3.2.1.52), and other enzymes represented 51.36% of the total secretome. Few representatives were classified in the protease family (8.90%). Others (17.60%) are mostly intracellular proteins. A considerable part of the secretome was composed of hypothetical proteins (22.14%), probably because of the absence of an annotated T. harzianum genome. The T. harzianum secretome composition highlights the importance of this fungus as a rich source of hydrolytic enzymes for bioconversion and biocontrol applications.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Trichoderma/enzimologia , Eletroforese em Gel de Poliacrilamida , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Trichoderma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...