Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(10): 1536-1548, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37783853

RESUMO

Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Processamento Alternativo , Mamíferos/genética
2.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688133

RESUMO

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Animais , Cromatina , Éxons , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA
3.
Mol Cell ; 82(3): 495-496, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120645

RESUMO

Martinez et al. (2022) uncovered a novel function for the most abundant modified nucleoside in RNA. The study shows that uridines at splice sites and splicing regulatory motifs in the pre-mRNA may be converted to pseudouridine during transcription and impact splicing decisions.


Assuntos
Pseudouridina , Splicing de RNA , Pseudouridina/genética , Pseudouridina/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética
4.
Biotechnol Bioeng ; 118(7): 2781-2803, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871054

RESUMO

Human-induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented a reproducible and scalable production of cerebellar organoids by using the novel single-use Vertical-Wheel bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. Thus, an efficient generation of organoids with cerebellar identity was achieved for the first time in a continuous process using a dynamic system without the need of organoids encapsulation in ECM-based hydrogels, allowing the possibility of large-scale production and application in high-throughput processes. The presence of factors that favors angiogenesis onset was also detected in dynamic conditions, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests, and studying pathological pathways involved in cerebellar degeneration.


Assuntos
Cerebelo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , RNA-Seq , Cerebelo/citologia , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia
5.
Mol Cell ; 81(9): 1935-1950.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735606

RESUMO

Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5' ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5' P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing.


Assuntos
Nanotecnologia , RNA Polimerase II/metabolismo , Precursores de RNA/biossíntese , Splicing de RNA , RNA Mensageiro/biossíntese , RNA-Seq , Transcrição Gênica , Exorribonucleases/genética , Exorribonucleases/metabolismo , Células HCT116 , Células HeLa , Humanos , Cinética , Poliadenilação , Capuzes de RNA , RNA Polimerase II/genética , Precursores de RNA/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...