Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(14): 144904, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472395

RESUMO

We have calculated the electric polarizability of two types of lipid bilayers, formed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. We demonstrate that despite the very similar chemical structures, the bilayers exhibit dramatically different terahertz infrared (IR) properties. We demonstrate that the chemical structure of the lipids influences the morphology of the bilayers, which in turn impacts their IR responses: interestingly, both structures exhibit a non-uniform absorption. For the case of DPPC, the infrared absorption is mostly driven by the hydrophilic heads, whereas for the POPC lipids, the absorption occurs predominately at the hydrophobic tails.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Eletricidade , Estrutura Molecular
2.
Nat Commun ; 4: 1453, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23385597

RESUMO

Repeatable magnetization reversal under purely electrical control remains the outstanding goal in magnetoelectrics. Here we use magnetic force microscopy to study a commercially manufactured multilayer capacitor that displays strain-mediated coupling between magnetostrictive Ni electrodes and piezoelectric BaTiO(3)-based dielectric layers. In an electrode exposed by polishing approximately normal to the layers, we find a perpendicularly magnetized feature that exhibits non-volatile electrically driven repeatable magnetization reversal with no applied magnetic field. Using micromagnetic modelling, we interpret this nominally full magnetization reversal in terms of a dynamic precession that is triggered by strain from voltage-driven ferroelectric switching that is fast and reversible. The anisotropy field responsible for the perpendicular magnetization is reversed by the electrically driven magnetic switching, which is, therefore, repeatable. Our demonstration of non-volatile magnetic switching via volatile ferroelectric switching may inspire the design of fatigue-free devices for electric-write magnetic-read data storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA