Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 335: 113512, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098872

RESUMO

α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.


Assuntos
Actinina/biossíntese , Movimento Celular/genética , Espinhas Dendríticas , Giro Denteado/fisiopatologia , Plasticidade Neuronal/genética , Convulsões/fisiopatologia , Actinina/genética , Actinas/metabolismo , Animais , Convulsivantes , Masculino , Neurogênese/genética , Neuropeptídeos/metabolismo , Pilocarpina , Ratos , Ratos Wistar , Receptores de GABA/metabolismo , Convulsões/induzido quimicamente , Sinapses
2.
Brain Struct Funct ; 220(4): 2449-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24889162

RESUMO

In mesial temporal lobe epilepsy (MTLE), spontaneous seizures likely originate from a multi-structural epileptogenic zone, including several regions of the limbic system connected to the hippocampal formation. In this study, we investigate the structural connectivity between the supramammillary nucleus (SuM) and the dentate gyrus (DG) in the model of MTLE induced by pilocarpine in the rat. This hypothalamic nucleus, which provides major extracortical projections to the hippocampal formation, plays a key role in the regulation of several hippocampus-dependent activities, including theta rhythms, memory function and emotional behavior, such as stress and anxiety, functions that are known to be altered in MTLE. Our findings demonstrate a marked reorganization of DG afferents originating from the SuM in pilocarpine-treated rats. This reorganization, which starts during the latent period, is massive when animals become epileptic and continue to evolve during epilepsy. It is characterized by an aberrant distribution and an increased number of axon terminals from neurons of both lateral and medial regions of the SuM, invading the entire inner molecular layer of the DG. This reorganization, which reflects an axon terminal sprouting from SuM neurons, could contribute to trigger spontaneous seizures within an altered hippocampal intrinsic circuitry.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/fisiopatologia , Hipotálamo Posterior/fisiopatologia , Terminações Pré-Sinápticas/patologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Masculino , Agonistas Muscarínicos , Vias Neurais/fisiopatologia , Fosfopiruvato Hidratase/metabolismo , Pilocarpina/toxicidade , Vírus da Raiva/metabolismo , Ratos , Ratos Wistar , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
Eur J Neurosci ; 32(5): 771-85, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20722723

RESUMO

The supramammillary nucleus (SuM) provides substantial projections to the hippocampal formation. This hypothalamic structure is involved in the regulation of hippocampal theta rhythm and therefore the control of hippocampal-dependent cognitive functions as well as emotional behavior. A major goal of this study was to characterize the neurotransmitter identity of the SuM-hippocampal pathways. Our findings demonstrate two distinct neurochemical pathways in rat. The first pathway originates from neurons in the lateral region of the SuM and innervates the supragranular layer of the dorsal dentate gyrus and, to a much lesser extent, the ventral dentate gyrus. This pathway displays a unique dual phenotype for GABAergic and glutamatergic neurotransmission. Axon terminals contain markers of GABAergic neurotransmission, including the synthesizing enzyme of GABA, glutamate decarboxylase 65, and the vesicular GABA transporter and also a marker of glutamatergic neurotransmission, the vesicular glutamate transporter 2. The second pathway originates from neurons in the most posterior and medial part of the SuM and innervates exclusively the inner molecular layer of the ventral dentate gyrus and the CA2/CA3a pyramidal cell layer of the hippocampus. The axon terminals from the medial part of the SuM contain the vesicular glutamate transporter 2 only. These data demonstrate for the first time the heterogeneity of the SuM-hippocampal pathways, not only from an anatomical but also a neurochemical point of view. These pathways, implicated in different neuronal networks, could modulate different hippocampal activities. They are likely to be involved differently in the regulation of hippocampal theta rhythm and associated cognitive functions as well as emotional behavior.


Assuntos
Hipocampo/metabolismo , Corpos Mamilares/metabolismo , Vias Neurais/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Ácido Glutâmico/metabolismo , Hipocampo/anatomia & histologia , Hipocampo/ultraestrutura , Masculino , Corpos Mamilares/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico/métodos , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...