Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Expert Opin Drug Deliv ; 21(8): 1251-1262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39245953

RESUMO

INTRODUCTION: Polymeric nanoparticles used for antigen delivery against infections and for cancer immunotherapy are an emerging therapeutic strategy in promoting the development of innovative vaccines. Beyond their capability to create targeted delivery systems with controlled release of payloads, biodegradable polymers are utilized for their ability to enhance the immunogenicity and stability of antigens. AREAS COVERED: This review extensively discusses the physicochemical parameters that affect the behavior of nanoparticles as antigen-delivery systems. Additionally, various types of natural and synthetic polymers and recent advancements in nanoparticle-based targeted vaccine production are reviewed. EXPERT OPINION: Biodegradable polymeric nanoparticles have gained major interest in the vaccination filed and have been extensively used to encapsulate antigens against a wide variety of tumors. Moreover, their versatility in terms of tunning their physicochemical characteristics, and their surface, facilitates the targeting to antigen presenting cells and enhances immune response.


Assuntos
Vacinas Anticâncer , Imunoterapia , Nanopartículas , Neoplasias , Polímeros , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Imunoterapia/métodos , Animais , Polímeros/química , Vacinas Anticâncer/administração & dosagem , Antígenos/administração & dosagem , Antígenos/imunologia , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada , Sistemas de Liberação de Fármacos por Nanopartículas/química
2.
Expert Opin Drug Deliv ; : 1-10, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245925

RESUMO

INTRODUCTION: In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREASCOVERED: CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION: We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells further.

3.
World J Pediatr ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39192003

RESUMO

BACKGROUND: Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field. DATA SOURCES: Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources. RESULTS: Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population. CONCLUSIONS: Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.

4.
Nanomedicine (Lond) ; : 1-16, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092498

RESUMO

Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity. Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines. Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells. Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.


Despite current advances, cancer is the second cause of death worldwide, but conventional therapies have side effects and limited efficacy. Natural therapies are emerging as suitable alternatives and, among them, Melatonin is a well-known compound with antitumoral properties. However, it is degraded by light, decreasing its therapeutical activity. In order to effectively deliver Melatonin into cancer cells, it has been encapsulated into biodegradable nanoparticles containing rosehip oil, which may boost the antitumoral properties. These nanoparticles have been optimized, showing a small size and a high Melatonin encapsulation, sustained drug release and good stability. Furthermore, in vitro studies demonstrated antitumoral activity against several cancer cell lines, also showing a high internalization inside them. Moreover, studies conducted using chicken embryonated eggs, showed that nanoparticles were non-toxic, thus confirming its promising therapeutical applications.

5.
Tissue Cell ; 90: 102525, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39178577

RESUMO

MicroRNAs represent a class of small RNAs that act to silence genes post-transcriptionally by inhibiting the translation of target messenger RNAs, and this study aimed to understand how miRNAs influence the set-up of periodontal disease. Periodontitis was induced by inserting a ligature into the left first mandibular molar in a rat model, which was kept for the entire 56 days-time of experiment. After 56 days post-periodontitis induction, the histopathological analysis showed an apical extension of the junctional epithelium, with areas of hyperplasia, exocytosis, and a mixed inflammatory infiltrate with a predominance of neutrophils, lymphocytes, and eventual plasma cells in the deeper layers. The cement surface showed areas of irregularity, covered by cementoblasts and irregular surfaces, confirming the set-up of periodontitis. In the sequencing analysis, 26,404 genes were identified, with 132 reaching statistical significance. Among genes with a statistical difference, 18 were found to encode for microRNAs. The identified microRNAs are primarily involved in bone remodeling by acting on fibroblast growth factors, and collagen production. These outcomes demonstrate a signaling role in bone resorption, which is consistent with the histopathological observations that show the installation of inflammation with epithelial migration and the beginning of the repair process, with cementum resorption. The disclosure of how miRNAs may influence the maintaining of periodontal disease will help the development of new dental materials for the prophylaxis and treatment of alveolar bone resorption.


Assuntos
Modelos Animais de Doenças , MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Doenças Periodontais/patologia , Doenças Periodontais/genética , Doenças Periodontais/metabolismo , Masculino , Regulação da Expressão Gênica , Periodontite/patologia , Periodontite/genética , Periodontite/metabolismo
6.
J Tradit Complement Med ; 14(4): 435-445, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035688

RESUMO

Background and aim: Tradescantia spathacea (T. spathacea) is a traditional medicinal plant from Central America and its tea, obtained by infusion, has been recognized as a functional food. The aim of this work was to investigate the effects of dry tea containing biocompounds from T. spathacea tea on motor and emotional behavior, as well as tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) expression in 6-hydroxydopamine (6-OHDA)-lesioned rats. Experimental procedure: Bioactives were identified by Ultra Performance Liquid Chromatography (UPLC) and an in vivo study in male Wistar rats was run as proof of concept of neuroprotective effects of DTTS. Results and conclusion: We found 15 biocompounds that had not been previously reported in T. spathacea: the UPLC-QTOF-MS/MS allowed identification five phenolic acids, one coumarin, two flavonoids, one iridoid, one phenylpropanoid glycoside, and six fatty acid derivatives. The dry tea of T. spathacea (DTTS) presented significant antioxidant activity and high contents of phenolic compounds and flavonoids. Doses of 10, 30, and 100 mg/kg of DTTS were protective against dopaminergic neurodegeneration and exhibited modulatory action on the astrocyte-mediated neuroinflammatory response. Behavioral tests showed that 30 mg/kg of DTTS counteracted motor impairment, while 100 mg/kg produced an anxiolytic effect. The DTTS could be, therefore, a promising strategy for the management of Parkinson's disease.

7.
Int J Nanomedicine ; 19: 7033-7048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015675

RESUMO

Purpose: The anticancer potential of indomethacin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro, in vivo, and in clinical trials is well known and widely reported in the literature, along with their side effects, which are mainly observed in the gastrointestinal tract. Here, we present a strategy for the application of the old drug indomethacin as an anticancer agent by encapsulating it in nanostructured lipid carriers (NLC). We describe the production method of IND-NLC, their physicochemical parameters, and the results of their antiproliferative activity against selected cancer cell lines, which were found to be higher compared to the activity of free indomethacin. Methods: IND-NLC were fabricated using the hot high-pressure homogenization method. The nanocarriers were physicochemically characterized, and their biopharmaceutical behaviour and therapeutic efficacy were evaluated in vitro. Results: Lipid nanoparticles IND-NLC exhibited a particle size of 168.1 nm, a negative surface charge (-30.1 mV), low polydispersity index (PDI of 0.139), and high encapsulation efficiency (over 99%). IND-NLC were stable for over 60 days and retained integrity during storage at 4 °C and 25 °C. The potential therapeutic benefits of IND-NLC were screened using in vitro cancer models, where nanocarriers with encapsulated drug effectively inhibited the growth of breast cancer cell line MDA-MB-468 at dosage 15.7 µM. Conclusion: We successfully developed IND-NLC for delivery of indomethacin to cancer cells and confirmed their antitumoral efficacy in in vitro studies. The results suggest that indomethacin encapsulated in lipid nanoparticles possesses high anticancer potential. Moreover, the presented strategy is highly promising and may offer a new alternative for future therapeutic drug innovations.


Assuntos
Antineoplásicos , Portadores de Fármacos , Indometacina , Lipídeos , Tamanho da Partícula , Indometacina/química , Indometacina/farmacologia , Indometacina/administração & dosagem , Indometacina/farmacocinética , Humanos , Portadores de Fármacos/química , Lipídeos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Nanopartículas/química , Proliferação de Células/efeitos dos fármacos , Nanoestruturas/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-39080213

RESUMO

New wound dressings based on polymeric membranes have been widely exploited for clinical applications to assist in the healing process and prevent additional complications (e.g., bacterial infections). Here we propose the development of a new production method of polymeric membranes based on chitosan, incorporating glycolic extract of Aloe vera with joint synthesis of silver nanoparticles for use as a new bioactive dressing. The membranes were obtained by casting technique, and their morphological, physicochemical characteristics, degree of swelling, degradation profile and antimicrobial activity evaluated. Morphological analyzes confirmed the synthesis and presence of silver nanoparticles in the polymeric membrane. The chemical compatibility between the materials was demonstrated through thermal analysis (TGA and DSC) combined with ATR-FTIR tests, showing the complexation of the membranes (Mb-Ch-Ex.Av-NPs). All membranes were characterized as hydrophilic material (with a contact angle (Ó©) < 90°); however, the highest degree of swelling was obtained for the chitosan. (Mb-Ch) membrane (69.91 ± 5.75%) and the lowest for Mb-Ch-Ex.Av-NPs (26.62 ± 8.93%). On the other hand, the degradation profile was higher for Mb-Ch-Ex.Av-NPs (77.85 ± 7.51%) and lower for Mb-Ch (57.60 ± 2.29%). The manufactured bioactive dressings showed activity against Escherichia coli and Staphylococcus aureus. Our work confirmed the development of translucent and flexible chitosan-based membranes, incorporating Aloe vera glycolic extract with joint synthesis of silver nanoparticles for use as a new bioactive dressing, with proven antimicrobial activity.

9.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890850

RESUMO

Bixin is the main carotenoid found in the outer portion of the seeds of Bixa orellana L., commercially known as annatto. This compound is industrially employed in pharmaceutical, cosmetic, and food formulations as a natural dye to replace chemical additives. This study aimed to extract bixin from annatto seeds and obtain encapsulated bixin in a powder form, using freeze-drying encapsulation and maltodextrin as encapsulating agent. Bixin was extracted from annatto seeds employing successive washing with organic solvents, specifically hexane and methanol (1:1 v/v), followed by ethyl acetate and dichloromethane for subsequent washes, to effectively remove impurities and enhance bixin purity, and subsequent purification by crystallization, reaching 1.5 ± 0.2% yield (or approximately 15 mg of bixin per gram of seeds). Bixin was analyzed spectrophotometrically in different organic solvents (ethanol, isopropyl alcohol, dimethylsulfoxide, chloroform, hexane), and the solvents chosen were chloroform (used to solubilize bixin during microencapsulation) and hexane (used for spectrophotometric determination of bixin). Bixin was encapsulated according to a 22 experimental design to investigate the influence of the concentration of maltodextrin (20 to 40%) and bixin-to-matrix ratio (1:20 to 1:40) on the encapsulation efficiency (EE%) and solubility of the encapsulated powder. Higher encapsulation efficiency was obtained at a maltodextrin concentration of 40% w/v and a bixin/maltodextrin ratio of 1:20, while higher solubility was observed at a maltodextrin concentration of 20% w/v for the same bixin/maltodextrin ratio. The encapsulation of this carotenoid by means of freeze-drying is thus recognized as an innovative and promising approach to improve its stability for further processing in pharmaceutical and food applications.

10.
Braz J Microbiol ; 55(3): 2753-2766, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38888693

RESUMO

The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.


Assuntos
Antibacterianos , Sistemas de Liberação de Medicamentos , Antibacterianos/farmacologia , Humanos , Bactérias/efeitos dos fármacos , Bactérias/genética , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Farmacorresistência Bacteriana Múltipla , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
11.
Acta Biomater ; 180: 1-17, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604468

RESUMO

This analysis explores the principal regulatory concerns linked to nanomedicines and gene vaccines, including the complexities involved and the perspectives on how to navigate them. In the realm of nanomedicines, ensuring the safety of nanomaterials is paramount due to their unique characteristics and potential interactions with biological systems. Regulatory bodies are actively formulating guidelines and standards to assess the safety and risks associated with nanomedicine products, emphasizing the need for standardized characterization techniques to accurately gauge their safety and effectiveness. Regarding gene vaccines, regulatory frameworks must be tailored to address the distinct challenges posed by genetic interventions, necessitating special considerations in safety and efficacy evaluations, particularly concerning vector design, target specificity, and long-term patient monitoring. Ethical concerns such as patient autonomy, informed consent, and privacy also demand careful attention, alongside the intricate matter of intellectual property rights, which must be balanced against the imperative of ensuring widespread access to these life-saving treatments. Collaborative efforts among regulatory bodies, researchers, patent offices, and the private sector are essential to tackle these challenges effectively, with international cooperation being especially crucial given the global scope of nanomedicine and genetic vaccine development. Striking the right balance between safeguarding intellectual properties and promoting public health is vital for fostering innovation and ensuring equitable access to these ground-breaking technologies, underscoring the significance of addressing these regulatory hurdles to fully harness the potential benefits of nanomedicine and gene vaccines for enhancing healthcare outcomes on a global scale. STATEMENT OF SIGNIFICANCE: Several biomaterials are being proposed for the development of nanovaccines, from polymeric micelles, PLGA-/PEI-/PLL-nanoparticles, solid lipid nananoparticles, cationic lipoplexes, liposomes, hybrid materials, dendrimers, carbon nanotubes, hydrogels, to quantum dots. Lipid nanoparticles (LNPs) have gained tremendous attention since the US Food and Drug Administration (FDA) approval of Pfizer and Moderna's COVID-19 vaccines, raising public awareness to the regulatory challenges associated with nanomedicines and genetic vaccines. This review provides insights into the current perspectives and potential strategies for addressing these issues, including clinical trials. By navigating these regulatory landscapes effectively, we can unlock the full potential of nanomedicine and genetic vaccines using a range of promising biomaterials towards improving healthcare outcomes worldwide.


Assuntos
Nanomedicina , Humanos , Vacinas de DNA/efeitos adversos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38662335

RESUMO

Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.

14.
J Control Release ; 365: 617-639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043727

RESUMO

Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.


Assuntos
Gelatina , Nanotubos de Carbono , Humanos , Gelatina/química , Alicerces Teciduais/química , Nanotubos de Carbono/química , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual
15.
Drug Deliv Transl Res ; 14(1): 62-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37566362

RESUMO

The aim of this work was to develop a dense lamellar scaffold, as a biomimetic material with potential applications in the regeneration of tracheal tissue after surgical tumor resection. The scaffolds were produced by plastic compression technique, exploiting the use of total phenolic compounds (TPC) from Psidium guajava Linn as a potential cross-linking agent in a polymeric mixture based on collagen (COL), silk fibroin (SF), and polyethylene glycol 400 (PEG 400). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the chemical interactions between the polymers and the cross-linking of TPC between COL and SF. Morphological analyses showed scaffolds with porosity, interconnectivity, and a porous surface structure with a gyroid-like geometry. The analysis of the anisotropic degree resulted in anisotropic structures (0.1% TFC and 0.3% TFC) and an isotropic structure (0.5% TFC). In the mechanical properties, it was evidenced greater resistance for the 0.3% TFC formulation. The addition of TPC percentages did not result in a significant difference (p > 0.05) in swelling capacity and disintegration rate. The results confirmed that TPC were able to modulate the morphological, morphometric, and mechanical properties of scaffolds. Thus, this study describes a potential new material to improve the regeneration of major tracheal structures after surgical tumor removal.


Assuntos
Fibroínas , Neoplasias , Psidium , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fibroínas/química , Colágeno/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Tradit Complement Med ; 13(6): 575-587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020546

RESUMO

Scientific evidence exists about the association between neurological diseases (i.e., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, depression, and memory loss) and oxidative damage. The increasing worldwide incidence of such diseases is attracting the attention of researchers to find palliative medications to reduce the symptoms and promote quality of life, in particular, in developing countries, e.g., South America and Africa. Among potential alternatives, extracts of Cannabis Sativa L. are suitable for people who have neurological disorders, spasticity, and pain, nausea, resulting from diseases such as cancer and arthritis. In this review, we discuss the latest developments in the use of Cannabis, its subtypes and constituents, extraction methods, and relevant pharmacological effects. Biomedical applications, marketed products, and prospects for the worldwide use of Cannabis Sativa L. extracts are also discussed, providing the bibliometric maps of scientific literature published in representative countries from South America (i.e., Brazil) and Africa (i.e., South Africa). A lack of evidence on the effectiveness and safety of Cannabis, besides the concerns about addiction and other adverse events, has led many countries to act with caution before changing Cannabis-related regulations. Recent findings are expected to increase the social acceptance of Cannabis, while new technologies seem to boost the global cannabis market because the benefits of (-)-trans-delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) use have been proven in several studies in addition to the potential to general new employment.

17.
Int J Nanomedicine ; 18: 6979-6997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026534

RESUMO

Purpose: Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties. However, they have a low aqueous solubility. To overcome this drawback, APG can be encapsulated in nanostructured lipid carriers (NLC). Therefore, we developed dual NLC encapsulating APG (APG-NLC) with a lipid matrix containing rosehip oil, which is known for its anti-inflammatory and antioxidant properties. Methods: Optimisation, physicochemical characterisation, biopharmaceutical behaviour, and therapeutic efficacy of this novel nanostructured system were assessed. Results: APG-NLC were optimized obtaining an average particle size below 200 nm, a surface charge of -20 mV, and an encapsulation efficiency over 99%. The APG-NLC released APG in a sustained manner, and the results showed that the formulation was stable for more than 10 months. In vitro studies showed that APG-NLC possess significant antiangiogenic activity in ovo and selective antiproliferative activity in several cancer cell lines without exhibiting toxicity in healthy cells. Conclusion: APG-NLC containing rosehip oil were optimised. They exhibit suitable physicochemical parameters, storage stability for more than 10 months, and prolonged APG release. Moreover, APG-NLC were internalised inside tumour cells, showing the capacity to cause cytotoxicity in cancer cells without damaging healthy cells.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Apigenina , Lipídeos/química , Portadores de Fármacos/química , Nanoestruturas/química , Antioxidantes/química , Tamanho da Partícula , Neoplasias/tratamento farmacológico
18.
Int J Pharm ; 647: 123535, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37865132

RESUMO

Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures. Poloxamer 407® was used as biocompatible biomaterial to embed hMSCs. The developed hydrogel containing 20 % (w/w) of polymer resulted in the best formulation with respect to physical, mechanical, morphological and biological properties. Its high swelling capacity confirmed the hydrogel's capacity to absorb wounds' exudate. LIVE/DEAD® assay confirm that hMSCs remained viable for at least 48 h when loaded into the hydrogels. Adding increasing concentrations of hMSCs-loaded hydrogel to the epithelium did not affect keratinocytes' viability and healing capacity and all wound area was closed in less than one day. Our study opens opportunities to exploit poloxamer hydrogels as cell carriers for the treatment of skin superficial wound.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Poloxâmero , Cicatrização , Pele
19.
Chem Biodivers ; 20(10): e202300083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681514

RESUMO

This work describes a new hair dyeing methodology using a chemical reaction between geniposide, an iridoid glycoside extracted from the fruit of Genipa americana (geniposide extract, GE) and the amine group of hair keratin. The influence of reaction conditions (pH, temperature, and extract concentration) on the staining of hair fibers, color development, fiber morphology, and mechanical hair properties of black and white human hair samples, was evaluated before and after GE dyeing treatment. Eye contact safety of GE was also studied using HET-CAM. The treatment of white hair fibers using GE at 20 mg mL-1 , temperature of 80 °C and pH 5.5 presented the greatest color change (ΔE=54.0). The higher pH influence was observed at pH 10.0 on white hair tresses (ΔE=6.8), using an GE concentration of 20 mg mL-1 and room temperature (25 °C). Treated samples showed marked changes on mechanical and morphological properties. The HET-CAM did not show any change, thus demonstrating that using GE is safe. In conclusion, the temperature and concentration of the extract were the variables that mostly influenced the color and hair damage. A new approach for hair dyeing was established where iridoids may potentially be useful as a natural hair dyeing.

20.
Curr Pharm Des ; 29(28): 2191-2203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37723628

RESUMO

The high levels of antibiotic resistance registered worldwide have become a serious health problem, threatening the currently available treatments for a series of infectious diseases. With antibiotics becoming less and less effective, it is becoming increasingly difficult and, in some cases, impossible to treat patients with even common infectious diseases, such as pneumonia. The inability to meet the ever-increasing demand to control microbial infection requires both the search for new antimicrobials and improved site-specific delivery. On the one hand, bacterial secondary metabolites are known for their diverse structure and antimicrobial potential and have been in use for a very long time in diverse sectors. A good deal of research is produced annually describing new molecules of bacterial origin with antimicrobial properties and varied applications. However, very few of these new molecules reach the clinical phase and even fewer are launched in the market for use. In this review article, we bring together information on these molecules with potential for application, in particular, for human and veterinary medicine, and the potential added value of the use of liposomes as delivery systems for site-specific delivery of these drugs with the synergistic effect to overcome the risk of antibiotic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA