Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10542, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719895

RESUMO

We experimentally demonstrate resonance of first-order vector vortex beams (VVB) with a triangular optical cavity. We also show that, due to their symmetry properties, the VVBs commonly known as radial and azimuthal beams do not resonate at the same cavity length, which could be explored to use the triangular resonator as a mode sorter. In addition, an intracavity Pancharatnam phase shifter (PPS) is implemented in order to compensate for any birefringent phase that the cavity mirrors may introduce.

2.
Phys Rev Lett ; 113(24): 240501, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541759

RESUMO

When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and observe the transition from bipartite to multipartite entanglement and back, and show how these transitions are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit entanglement is observed at some points of the evolution.

3.
Phys Rev Lett ; 112(16): 160501, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24815628

RESUMO

A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states-at sufficiently low temperature-are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalization for these states. This allows us to tune the system's temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterization of experimental cluster-state computation under imperfect conditions.

4.
Phys Rev Lett ; 112(5): 053602, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580590

RESUMO

We report an experiment in which the moments of spatial coordinates are measured in down-converted photons directly, without having to reconstruct any marginal probability distributions. We use a spatial light modulator to couple the spatial degrees of freedom and the polarization of the fields, which acts as an ancilla system. Information about the spatial correlations is obtained via measurements on the ancilla qubit. Among other applications, this new method provides a more efficient technique to identify continuous variable entanglement.

5.
Phys Rev Lett ; 106(13): 130402, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517361

RESUMO

Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.

6.
Proc Natl Acad Sci U S A ; 106(51): 21517-20, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19995963

RESUMO

Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.

7.
Science ; 324(5933): 1414-7, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19443736

RESUMO

The estimation of the entanglement of multipartite systems undergoing decoherence is important for assessing the robustness of quantum information processes. It usually requires access to the final state and its full reconstruction through quantum tomography. General dynamical laws may simplify this task. We found that when one of the parties of an initially entangled two-qubit system is subject to a noisy channel, a single universal curve describes the dynamics of entanglement for both pure and mixed states, including those for which entanglement suddenly disappears. Our result, which is experimentally demonstrated using a linear optics setup, leads to a direct and efficient determination of entanglement through the knowledge of the initial state and single-party process tomography alone, foregoing the need to reconstruct the final state.

8.
Nature ; 440(7087): 1022-4, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16625190

RESUMO

Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...