Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(45): 27855-27859, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480738

RESUMO

In this work we apply first principles calculations to investigate the flat band phenomenology in twisted antimonene bilayer. We show that the relatively strong interlayer interactions which characterize this compound have profound effects in the emergence and properties of the flat bands. Specifically, when the moiré length becomes large enough to create well defined stacking patterns along the structure, out-of-plane displacements take place and are stabilized in the regions dominated by the AB stacking, leading to the emergence of flat bands. The interplay between structural and electronic properties allows for detection of flat bands in higher twist angles comparable to other two-dimensional materials. We also show that their energy position may be modulated by noncovalent functionalization with electron acceptor molecules.

2.
J Phys Condens Matter ; 32(16): 165302, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31899905

RESUMO

The control of geometric structure is a key aspect in the interplay between theoretical predictions and experimental realization in the science and applications of nanomaterials. This is particularly important in one-dimensional structures such as nanoribbons, in which the edge morphology dictates most of the electronic behavior in low energy scale. In the present work we demonstrate by means of first principles calculations that the oxidation of few-layer antimonene may lead to an atomic restructuring with formation of ordered multilayer zig-zag nanoribbons. The widths are uniquely determined by the number of layers of the initial structure, allowing the synthesis of ultranarrow ribbons and chains. We also show that the process may be extended to other compounds based on group V elements, such as arsenene. The characterization of the electronic structure of the resulting ribbons shows an important effect of stacking on band gaps and on modulation of electronic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...