Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323434

RESUMO

Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1ß, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.


Assuntos
Infecções por Alphavirus , Artrite , Vírus Chikungunya , Periodontite , Humanos , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/patologia , Vírus Chikungunya/fisiologia , Mediadores da Inflamação/uso terapêutico , Ligantes , Ross River virus/fisiologia
2.
Viruses ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243296

RESUMO

Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.


Assuntos
Produtos Biológicos , Infecção por Zika virus , Zika virus , Humanos , Animais , Chlorocebus aethiops , Células Vero , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Inflamm Res ; 72(5): 929-932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988640

RESUMO

The blood levels of neutrophils are associated with the severity of COVID -19. However, their role in the pulmonary environment during COVID -19 severity is not clear. Here, we found a decrease in the neutrophil count in BAL (bronchoalveolar lavage) in non-survivors and in older patients (> 60 years). In addition, we have shown that older patients have higher serum concentration of CXCL8 and increased IL-10 expression by neutrophils.


Assuntos
COVID-19 , Neutrófilos , Humanos , Idoso , Líquido da Lavagem Broncoalveolar , Pulmão , Prognóstico
4.
Front Cell Infect Microbiol ; 12: 811474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548467

RESUMO

Cryptococcosis is an invasive mycosis caused by Cryptococcus spp. that affects the lungs and the central nervous system (CNS). Due to the severity of the disease, it may occur concomitantly with other pathogens, as a coinfection. Pseudomonas aeruginosa (Pa), an opportunistic pathogen, can also cause pneumonia. In this work, we studied the interaction of C. gattii (Cg) and Pa, both in vitro and in vivo. Pa reduced growth of Cg by the secretion of inhibitory molecules in vitro. Macrophages previously stimulated with Pa presented increased fungicidal activity. In vivo, previous Pa infection reduced morbidity and delayed the lethality due to cryptococcosis. This phenotype was correlated with the decreased fungal burden in the lungs and brain, showing a delay of Cg translocation to the CNS. Also, there was increased production of IL-1ß, CXCL-1, and IL-10, together with the influx of iNOS-positive macrophages and neutrophils to the lungs. Altogether, Pa turned the lung into a hostile environment to the growth of a secondary pathogen, making it difficult for the fungus to translocate to the CNS. Further, iNOS inhibition reverted the Pa protective phenotype, suggesting its important role in the coinfection. Altogether, the primary Pa infection leads to balanced pro-inflammatory and anti-inflammatory responses during Cg infection. This response provided better control of cryptococcosis and was decisive for the mild evolution of the disease and prolonged survival of coinfected mice in a mechanism dependent on iNOS.


Assuntos
Coinfecção , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Infecções por Pseudomonas , Animais , Criptococose/microbiologia , Camundongos , Fagocitose
5.
Chem Biodivers ; 19(4): e202100842, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35285139

RESUMO

Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 µg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 µg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.


Assuntos
Neuroblastoma , Triterpenos , Infecção por Zika virus , Zika virus , Animais , Criança , Chlorocebus aethiops , Humanos , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polifenóis/farmacologia , Espectrometria de Massas em Tandem , Triterpenos/farmacologia , Células Vero , Infecção por Zika virus/tratamento farmacológico
6.
Immunol Invest ; 51(6): 1756-1771, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35152824

RESUMO

Cancer chemotherapy and radiotherapy may result in mucositis characterized by stem cell damage and inflammation in the gastrointestinal tract. The molecular mechanisms underlying this pathology remain unknown. Based on the assumption that mitochondrial CPG-DNA (mtDNA) released and sensed by TLR9 could underlie mucositis pathology, we analyzed the mtDNA levels in sera as well as inflammatory and disease parameters in the small intestine from wild-type (WT) and TLR9-deficient mice (TLR9-/-) in an experimental model of intestinal mucositis induced by irinotecan. Additionally, we verified the ability of WT and TLR9-/- macrophages to respond to CpG-DNA in vitro. WT mice injected with irinotecan presented a progressive increase in mtDNA in the serum along with increased hematocrit, shortening of small intestine length, reduction of intestinal villus:crypt ratio and increased influx of neutrophils, which were followed by higher expression of Nlrp3 and Casp1 mRNA and increased IL-1ß levels in the ileum when compared to vehicle-injected mice. TLR9-deficient mice were protected in all these parameters when compared to WT mice. Furthermore, TLR9 was required for the production of IL-1ß and NO after macrophage stimulation with CpG-DNA. Overall, our findings show that the amount of circulating free CpG-DNA is increased upon chemotherapy and that TLR9 activation is important for NLRP3 inflammasome transcription and further IL-1ß release, playing a central role in the development of irinotecan-induced intestinal mucositis. We suggest that TLR9 antagonism may be a new therapeutic strategy for limiting irinotecan-induced intestinal inflammation.


Assuntos
Mucosite , Animais , DNA Mitocondrial/genética , Inflamação/metabolismo , Irinotecano/toxicidade , Ligantes , Camundongos , Camundongos Knockout , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
7.
Immunology ; 165(3): 355-368, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964126

RESUMO

Mucositis is a major clinical complication associated with cancer treatment and may limit the benefit of chemotherapy. Leukocytes and inflammatory mediators have been extensively associated with mucositis severity. However, the role of eosinophils in the pathophysiology of chemotherapy-induced mucositis remains to be elucidated. Here, using GATA-1-deficient mice, we investigated the role of eosinophils in intestinal mucositis. There was marked accumulation of eosinophils in mice given irinotecan and eosinophil ablation inhibited intestinal mucositis. Treatment with Evasin-4, a chemokine receptor antagonist, reduced the recruitment of eosinophils and decreased irinotecan-induced mucositis. Importantly, Evasin-4 did not interfere negatively with the antitumour effects of irinotecan. Evasin-4 was of benefit for mice given high doses of irinotecan once Evasin-4-treated mice presented delayed mortality. Altogether, our findings suggest that Evasin-4 may have significant mucosal-protective effects in the context of antineoplastic chemotherapy and may, therefore, be useful in combination with anticancer treatment in cancer patients.


Assuntos
Antineoplásicos , Mucosite , Animais , Antineoplásicos/uso terapêutico , Camptotecina/efeitos adversos , Eosinófilos/patologia , Humanos , Mucosa Intestinal/patologia , Irinotecano/efeitos adversos , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia
8.
Planta Med ; 88(13): 1123-1131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34763354

RESUMO

cis-Aconitic acid is a constituent from the leaves of Echinodorus grandiflorus, a medicinal plant traditionally used in Brazil to treat inflammatory conditions, including arthritic diseases. The present study aimed to investigate the anti-arthritic effect of cis-aconitic acid in murine models of antigen-induced arthritis and monosodium urate-induced gout. The possible underlying mechanisms of action was evaluated in THP-1 macrophages. Oral treatment with cis-aconitic acid (10, 30, and 90 mg/kg) reduced leukocyte accumulation in the joint cavity and C-X-C motif chemokine ligand 1 and IL-1ß levels in periarticular tissue. cis-Aconitic acid treatment reduced joint inflammation in tissue sections of antigen-induced arthritis mice and these effects were associated with decreased mechanical hypernociception. Administration of cis-aconitic acid (30 mg/kg p. o.) also reduced leukocyte accumulation in the joint cavity after the injection of monosodium urate crystals. cis-Aconitic acid reduced in vitro the release of TNF-α and phosphorylation of IκBα in lipopolysaccharide-stimulated THP-1 macrophages, suggesting that inhibition of nuclear factor kappa B activation was an underlying mechanism of cis-aconitic acid-induced anti-inflammatory effects. In conclusion, cis-aconitic acid has significant anti-inflammatory effects in antigen-induced arthritis and monosodium urate-induced arthritis in mice, suggesting its potential for the treatment of inflammatory diseases of the joint in humans. Additionally, our findings suggest that this compound may contribute to the anti-inflammatory effect previously reported for E. grandiflorus extracts.


Assuntos
Alismataceae , Gota , Humanos , Camundongos , Animais , Ácido Aconítico/farmacologia , Inibidor de NF-kappaB alfa , Ácido Úrico , Lipopolissacarídeos , NF-kappa B , Fator de Necrose Tumoral alfa , Ligantes , Alismataceae/química , Gota/induzido quimicamente , Gota/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quimiocinas , Inflamação
9.
Cells ; 10(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34359982

RESUMO

Paracoccidioidomycosis (PCM) is a systemic disease caused by Paracoccidioides spp. PCM is endemic in Latin America and most cases are registered in Brazil. This mycosis affects mainly the lungs, but can also spread to other tissues and organs, including the liver. Several approaches have been investigated to improve treatment effectiveness and protection against the disease. Extracellular vesicles (EVs) are good antigen delivery vehicles. The present work aims to investigate the use of EVs derived from Paracoccidioides brasiliensis as an immunization tool in a murine model of PCM. For this, male C57BL/6 were immunized with two doses of EVs plus adjuvant and then infected with P. brasiliensis. EV immunization induced IgM and IgG in vivo and cytokine production by splenocytes ex vivo. Further, immunization with EVs had a positive effect on mice infected with P. brasiliensis, as it induced activated T lymphocytes and NKT cell mobilization to the infected lungs, improved production of proinflammatory cytokines and the histopathological profile, and reduced fungal burden. Therefore, the present study shows a new role for P. brasiliensis EVs in the presence of adjuvant as modulators of the host immune system, suggesting their utility as immunizing agents.


Assuntos
Antígenos de Fungos/imunologia , Vesículas Extracelulares/microbiologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/microbiologia , Substâncias Protetoras/farmacologia , Animais , Anticorpos Antifúngicos/imunologia , Movimento Celular , Citocinas/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Imunização , Memória Imunológica , Pulmão/microbiologia , Pulmão/patologia , Ativação Linfocitária/imunologia , Masculino , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Padrões de Referência
10.
Virulence ; 12(1): 244-259, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33410731

RESUMO

St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne flavivirus that causes severe neurological disease in humans. SLEV replication in the central nervous system (CNS) induces the local production of interferons (IFNs), which are attributed to host protection. The antiviral response to SLEV infection in the CNS is not completely understood, which led us to characterize the roles of IFNs using mouse models of St. Louis encephalitis. We infected mice deficient in type I IFN receptor (ABR-/-) or deficient in Type II IFN (IFNγ-/-) and assessed the contribution of each pathway to disease development. We found that type I and II IFNs play different roles in SLEV infection. Deficiency in type I IFN signaling was associated to an early and increased mortality, uncontrolled SLEV replication and impaired ISG expression, leading to increased proinflammatory cytokine production and brain pathology. Conversely, IFNγ-/- mice were moderately resistant to SLEV infection. IFNγ deficiency caused no changes to viral load or SLEV-induced encephalitis and did not change the expression of ISGs in the brain. We found that type I IFN is essential for the control of SLEV replication whereas type II IFN was not associated with protection in this model.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Vírus da Encefalite de St. Louis/imunologia , Encefalite de St. Louis/imunologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Interferon Tipo I/genética , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Carga Viral , Replicação Viral/imunologia
11.
Gut Microbes ; 11(6): 1531-1546, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573321

RESUMO

Although dysbiosis in the gut microbiota is known to be involved in several inflammatory diseases, whether any specific bacterial taxa control host response to inflammatory stimuli is still elusive. Here, we hypothesized that dysbiotic indigenous taxa could be involved in modulating host response to inflammatory triggers. To test this hypothesis, we conducted experiments in germ-free (GF) mice and in mice colonized with dysbiotic taxa identified in conventional (CV) mice subjected to chemotherapy-induced mucositis. First, we report that the absence of microbiota decreased inflammation and damage in the small intestine after administration of the chemotherapeutic agent 5-fluorouracil (5-FU). Also, 5-FU induced a shift in CV microbiota resulting in higher amounts of Enterobacteriaceae, including E. coli, in feces and small intestine and tissue damage. Prevention of Enterobacteriaceae outgrowth by treating mice with ciprofloxacin resulted in diminished 5-FU-induced tissue damage, indicating that this bacterial group is necessary for 5-FU-induced inflammatory response. In addition, monocolonization of germ-free (GF) mice with E. coli led to reversal of the protective phenotype during 5-FU chemotherapy. E. coli monocolonization decreased the basal plasma corticosterone levels and blockade of glucocorticoid receptor in GF mice restored inflammation upon 5-FU treatment. In contrast, treatment of CV mice with ciprofloxacin, that presented reduction of Enterobacteriaceae and E. coli content, induced an increase in corticosterone levels. Altogether, these findings demonstrate that Enterobacteriaceae outgrowth during dysbiosis impacts inflammation and tissue injury in the small intestine. Importantly, indigenous Enterobacteriaceae modulates host production of the anti-inflammatory steroid corticosterone and, consequently, controls inflammatory responsiveness in mice.


Assuntos
Corticosterona/metabolismo , Disbiose/microbiologia , Enterobacteriaceae/crescimento & desenvolvimento , Animais , Antineoplásicos/efeitos adversos , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Corticosterona/imunologia , Disbiose/etiologia , Disbiose/imunologia , Disbiose/metabolismo , Enterobacteriaceae/genética , Fluoruracila/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos
12.
J Leukoc Biol ; 106(3): 619-629, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392775

RESUMO

This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1ß production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.


Assuntos
Artrite Gotosa/enzimologia , Artrite Gotosa/imunologia , Caspase 1/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Infiltração de Neutrófilos , Doença Aguda , Animais , Adesão Celular , Movimento Celular , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Citoplasma/metabolismo , Ativação Enzimática , Inflamassomos/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Articulações/patologia , Leucotrieno B4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Neutrófilos/metabolismo , Nociceptividade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Sinovial/irrigação sanguínea , Ácido Úrico
13.
Future Microbiol ; 14: 1511-1525, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31913059

RESUMO

Aim: Characterize the course of acute Aspergillus fumigatus lung infection in immunocompetent mice, investigating the immunological, pathological and tissue functional modifications. Materials & methods: C57BL/6 mice were intranasally infected with A. fumigatus conidia and euthanized to access inflammatory parameters. Results: Mice infected with A. fumigatus showed an inoculum-dependent lethality and body weight loss. An intense proinflammatory cytokine release, neutrophil infiltrate and pulmonary dysfunction was also observed in the early phase of infection. In the late phase of infection, proresolving mediators release, apoptosis and efferocytosis increased and lung tissue architecture is restored. Conclusion: Our study characterized an immunocompetent model of acute pulmonary Aspergillus infection in mice and opened an array of possibilities for investigations on interactions of A. fumigatus with host-immune system.


Assuntos
Lesão Pulmonar Aguda/microbiologia , Aspergillus fumigatus/patogenicidade , Citocinas/imunologia , Imunocompetência , Pulmão/microbiologia , Lesão Pulmonar Aguda/imunologia , Animais , Apoptose , Aspergillus fumigatus/imunologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Inflamação , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-29018774

RESUMO

Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/ß) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.


Assuntos
Causalidade , Coinfecção , Criptococose/complicações , Cryptococcus gattii/patogenicidade , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/complicações , Acetilglucosaminidase/metabolismo , Animais , Comportamento Animal , Encéfalo/microbiologia , Encéfalo/patologia , Proliferação de Células , Quimiocinas/metabolismo , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/mortalidade , Coinfecção/virologia , Criptococose/imunologia , Cryptococcus gattii/imunologia , Cryptococcus neoformans/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Interferon gama/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Óxido Nítrico/metabolismo , Infecções por Orthomyxoviridae/imunologia , Peroxidase/metabolismo , Ácido Peroxinitroso/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida
15.
J Clin Periodontol ; 44(8): 793-802, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28569991

RESUMO

AIM: Leukotrienes (LTs) are pro-inflammatory lipid mediators formed by the enzyme 5-lipoxygenase (5-LO). The involvement of 5-LO metabolites in periodontal disease (PD) is not well defined. This study aimed to assess the role of 5-LO in experimental PD induced by Aggregatibacter actinomycetemcomitans (Aa). MATERIAL AND METHODS: In vivo experiments were carried out using SV129 wild-type (WT) and 5-LO-deficient (5lo-/- ) mice inoculated with Aa. Osteoclasts were stimulated in vitro with AaLPS in the presence or not of selective inhibitors of the 5-LO pathway, or LTB4 or platelet-activating factor (PAF), as PAF has already been shown to increase osteoclast activity. RESULTS: In 5lo-/- mice, there were no loss of alveolar bone and less TRAP-positive osteoclasts in periodontal tissues, after Aa inoculation, despite local production of TNF-α and IL-6. The differentiation and activity of osteoclasts stimulated with AaLPS were diminished in the presence of BLT1 antagonist or 5-LO inhibitor, but not in the presence of cysteinyl leukotriene receptor antagonist. The osteoclast differentiation induced by PAF was impaired by the BLT1 antagonism. CONCLUSION: In conclusion, LTB4 but not CysLTs is important for Aa-induced alveolar bone loss. Overall, LTB4 affects osteoclast differentiation and activity and is a key intermediate of PAF-induced osteoclastogenesis.


Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Perda do Osso Alveolar/enzimologia , Perda do Osso Alveolar/microbiologia , Araquidonato 5-Lipoxigenase/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Hidroxiureia/análogos & derivados , Hidroxiureia/farmacologia , Interleucina-6/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
16.
J Nanobiotechnology ; 15(1): 26, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376812

RESUMO

BACKGROUND: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS: Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS: Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.


Assuntos
Formação de Anticorpos , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Nanotubos de Carbono/química , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proliferação de Células , Citocinas/imunologia , Dengue/imunologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Feminino , Imunidade Celular , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoconjugados/química , Nanomedicina , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise Espectral Raman , Baço/citologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
17.
Life Sci ; 176: 26-34, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341178

RESUMO

AIMS: To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. MAIN METHODS: To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). KEY FINDINGS: Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O2-) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF2α receptor antagonist) or SQ29584 [PGH2/thromboxane TXA2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O2- and hydrogen peroxide (H2O2) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. SIGNIFICANCE: These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature.


Assuntos
Aorta/metabolismo , Ciclo-Oxigenase 2/metabolismo , Nitroprussiato/farmacologia , Prostaglandina H2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vasodilatação/efeitos dos fármacos
18.
FASEB J ; 30(12): 4033-4041, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27535487

RESUMO

Alveolar bone loss is a result of an aggressive form of periodontal disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection. PD is often observed with other systemic inflammatory conditions, including arthritis. Melanocortin peptides activate specific receptors to exert antiarthritic properties, avoiding excessing inflammation and modulating macrophage function. Recent work has indicated that melanocortin can control osteoclast development and function, but whether such protection takes place in infection-induced alveolar bone loss has not been investigated. The purpose of this study was to evaluate the role of melanocortin in Aa-induced PD. Mice were orally infected with Aa and treated with the melanocortin analog DTrp8-γMSH or vehicle daily for 30 d. Then, periodontal tissue was collected and analyzed. Aa-infected mice treated with DTrp8-γMSH presented decreased alveolar bone loss and a lower degree of neutrophil infiltration in the periodontium than vehicle-treated animals; these actions were associated with reduced periodontal levels of TNF-α, IFN-γ, and IL-17A. In vitro experiments with cells differentiated into osteoclasts showed that osteoclast formation and resorptive activity were attenuated after treatment with DTrp8-γMSH. Thus, melanocortin agonism could represent an innovative way to tame overexuberant inflammation and, at the same time, preserve bone physiology, as seen after Aa infection.-Madeira, M. F. M., Queiroz-Junior, C. M., Montero-Melendez, T., Werneck, S. M. C., Corrêa, J. D., Soriani, F. M., Garlet, G. P., Souza, D. G., Teixeira, M. M., Silva, T. A., Perretti, M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Melanocortinas/agonistas , Osteoclastos/microbiologia , Infecções por Pasteurellaceae/prevenção & controle , Doenças Periodontais/metabolismo , Aggregatibacter actinomycetemcomitans , Perda do Osso Alveolar/etiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Periodontite/tratamento farmacológico , Periodontite/metabolismo
19.
Inflamm Bowel Dis ; 21(4): 888-900, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25738377

RESUMO

Several studies in patients with IBD and in animal models of IBD have revealed a protective effect of probiotics in reducing clinical symptoms of disease and in blunting the gut inflammation that accompanies this condition. However, the mechanism underlying the therapeutic effect of probiotics is currently unknown. Furthermore, the ability of probiotics to influence the enhanced thrombus development that accompanies IBD has not been studied. This study addresses whether the enhanced extraintestinal thrombosis (induced by light/dye injury) associated with experimental colitis is altered by oral treatment with the probiotic preparation VSL#3 or by the absence of microbiota. Colitis was induced by DSS 3% in Swiss Webster mice, germ-free mice, C57BL/6 WT, or Myd88 mice. In some experiments, mice received VSL#3 for 8 days before and during DSS feeding. Swiss Webster mice were also subjected to a chronic model of DSS colitis, and the effect of VSL#3 was evaluated. VSL#3 treatment significantly attenuated the accelerated thrombus formation observed in both acute and chronic models of colitis. VSL#3-treated mice also exhibited attenuated inflammatory response and injury in the colon. The protective effects of VSL#3 on colitis-associated thrombogenesis and inflammation were not evident in MyD88-deficient mice. Our results suggest that improved control of the enteric microflora in IBD may afford protection against the hypercoagulable prothrombotic state that follows this condition.


Assuntos
Colite/complicações , Suplementos Nutricionais , Fator 88 de Diferenciação Mieloide/imunologia , Probióticos/uso terapêutico , Trombose/prevenção & controle , Animais , Colite/induzido quimicamente , Colo/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trombose/etiologia
20.
Infect Immun ; 81(11): 4244-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002061

RESUMO

Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by oral biofilm-producing microorganisms, such as Aggregatibacter actinomycetemcomitans. The levels of the phospholipid platelet-activating factor (PAF) in the saliva, gingival crevicular fluid, and periodontal tissues are significantly increased during inflammatory conditions, such as PD, but the exact mechanism that links PAF to alveolar bone resorption is not well understood. In the current study, alveolar bone resorption was induced by experimental PD through the oral inoculation of A. actinomycetemcomitans in wild-type (WT) and PAF receptor knockout (Pafr(-/-)) mice. In vitro experiments using A. actinomycetemcomitans lipopolysaccharide (LPS)-stimulated RAW 264.7 cells treated with a PAF receptor antagonist (UK74505) were also performed. The expression of lyso-PAF acetyltransferase in periodontal tissues was significantly increased 3 h after A. actinomycetemcomitans LPS injection in mice. WT and Pafr(-/-) mice that were subjected to oral inoculation of A. actinomycetemcomitans presented neutrophil accumulation and increased levels of CXCL-1 and tumor necrosis factor alpha (TNF-α) in periodontal tissues. However, Pafr(-/-) mice presented less alveolar bone loss than WT mice. The in vitro blockade of the PAF receptor impaired the resorptive activity of A. actinomycetemcomitans LPS-activated osteoclasts. In conclusion, this study shows for the first time that the blockade of PAF receptor may contribute to the progression of PD triggered by A. actinomycetemcomitans by directly affecting the differentiation and activity of osteoclasts.


Assuntos
Infecções por Pasteurellaceae/patologia , Pasteurellaceae/patogenicidade , Doenças Periodontais/patologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Perda do Osso Alveolar/patologia , Animais , Reabsorção Óssea , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Endotoxinas/imunologia , Gengiva/imunologia , Gengiva/patologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Osteoclastos/metabolismo , Infecções por Pasteurellaceae/microbiologia , Doenças Periodontais/microbiologia , Glicoproteínas da Membrana de Plaquetas/deficiência , Receptores Acoplados a Proteínas G/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...