Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxicon, v. 184, p. 99-108, set. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3062

RESUMO

Ethnopharmacological relevance In the region of Western Pará, Amazonia, Brazil, Philodendron megalophyllum is widely used for the treatment of envenomations caused by bites from venomous snakes. The traditional use of plants is usually done through oral administration of an infusion (decoction) soon after the bite occurs. The efficiency of aqueous extracts of P. megalophyllum was demonstrated for blocking the activity of the venom of Bothrops sp., but only for a pre-incubation protocol (venom:extract), which fails to simulate the real form of use of this species. In this context, the objective of this research was to evaluate the anti-snakebite potential of the aqueous extract of P. megalophyllum to inhibit for the biological activity induced by Bothrops atrox venom (BaV) using traditional treatment methods. Material and methods Initially, an aqueous extract using the stem of P. megalophyllum (AEPm) was prepared following the standard procedure used by the residents of the rural area along the Tapajós River (Eixo Forte region) in Santarém, PA, Brazil. The phytochemical profile of AEPm was conducted using thin layer chromatography (TLC) and phenolic compounds were quantified through colorimetric trials. The cytotoxicity of AEPm was evaluated using the MRC-5 human fibroblast line, and the antioxidant potential was measured using DPPH methods and cell culture. AEPm antimicrobial action was evaluated by the 96-well plate microdilution and the minimum inhibitory concentration (MIC) methods using 18 types of microorganisms including bacteria that are present in the oral cavity of snakes. AEPm blocking potential was tested against BaV activity in vitro (fibrinolytic) and in vivo (defibrinating and hemorrhagic). In order to test for an interaction between BaV and AEPm SDS-PAGE electrophoresis was conducted. Results The presence of coumarins, fatty acids, and hydrolysable tannins were detected in the AEPm. The colorimetric trials showed that AEPm had a high concentration of condensed tannins (20.1 ± 1.2%). The potential of AEPm for blocking of hemorrhagic and fibrinolytic activity of BaV showed a maximum reduction of 86.1% and 96.5%, respectively, for the pre-incubation protocol (1:10, venom:extract). However, when the extract was administered orally there was no significant blocking of these activities. The interaction of BaV and AEPm showed a modification of the profile of proteic bands when compared to the pattern of bands obtained from the BaV alone. The AEPm was not considered toxic, demonstrated antioxidant activity, and was capable of reducing the growth of 10 of the 18 studied microorganisms. Conclusion Although the stem of P. megalophyllum is indicated by traditional medicine techniques as effective against snakebites, the extract, when tested orally was not able to significantly inhibit (p > 0.05) hemorrhage and defibrinating activity induced by the B. atrox venom. On the other hand, the extract yielded a promising result with respect to antioxidant and antimicrobial potential, and after further studies it could be used as a complementary treatment for localized action and secondary infections that frequently occur with snakebites from the genus of Bothrops sp

2.
Toxicon ; 184: 99-108, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17720

RESUMO

Ethnopharmacological relevance In the region of Western Pará, Amazonia, Brazil, Philodendron megalophyllum is widely used for the treatment of envenomations caused by bites from venomous snakes. The traditional use of plants is usually done through oral administration of an infusion (decoction) soon after the bite occurs. The efficiency of aqueous extracts of P. megalophyllum was demonstrated for blocking the activity of the venom of Bothrops sp., but only for a pre-incubation protocol (venom:extract), which fails to simulate the real form of use of this species. In this context, the objective of this research was to evaluate the anti-snakebite potential of the aqueous extract of P. megalophyllum to inhibit for the biological activity induced by Bothrops atrox venom (BaV) using traditional treatment methods. Material and methods Initially, an aqueous extract using the stem of P. megalophyllum (AEPm) was prepared following the standard procedure used by the residents of the rural area along the Tapajós River (Eixo Forte region) in Santarém, PA, Brazil. The phytochemical profile of AEPm was conducted using thin layer chromatography (TLC) and phenolic compounds were quantified through colorimetric trials. The cytotoxicity of AEPm was evaluated using the MRC-5 human fibroblast line, and the antioxidant potential was measured using DPPH methods and cell culture. AEPm antimicrobial action was evaluated by the 96-well plate microdilution and the minimum inhibitory concentration (MIC) methods using 18 types of microorganisms including bacteria that are present in the oral cavity of snakes. AEPm blocking potential was tested against BaV activity in vitro (fibrinolytic) and in vivo (defibrinating and hemorrhagic). In order to test for an interaction between BaV and AEPm SDS-PAGE electrophoresis was conducted. Results The presence of coumarins, fatty acids, and hydrolysable tannins were detected in the AEPm. The colorimetric trials showed that AEPm had a high concentration of condensed tannins (20.1 ± 1.2%). The potential of AEPm for blocking of hemorrhagic and fibrinolytic activity of BaV showed a maximum reduction of 86.1% and 96.5%, respectively, for the pre-incubation protocol (1:10, venom:extract). However, when the extract was administered orally there was no significant blocking of these activities. The interaction of BaV and AEPm showed a modification of the profile of proteic bands when compared to the pattern of bands obtained from the BaV alone. The AEPm was not considered toxic, demonstrated antioxidant activity, and was capable of reducing the growth of 10 of the 18 studied microorganisms. Conclusion Although the stem of P. megalophyllum is indicated by traditional medicine techniques as effective against snakebites, the extract, when tested orally was not able to significantly inhibit (p > 0.05) hemorrhage and defibrinating activity induced by the B. atrox venom. On the other hand, the extract yielded a promising result with respect to antioxidant and antimicrobial potential, and after further studies it could be used as a complementary treatment for localized action and secondary infections that frequently occur with snakebites from the genus of Bothrops sp

3.
J Ethnopharmacol ; 183: 166-175, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26940897

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant species Connarus favosus is used in folk medicine in the west of Pará state, Brazil, to treat snakebites. AIM OF THE STUDY: To investigate the potential of the aqueous extract of Connarus favosus (AECf) to inhibit hemorrhagic and phospholipase A2 activities induced by Bothrops atrox venom (BaV) and to determine the antioxidant and antimicrobial potentials of the extract. MATERIALS AND METHODS: AECf was analyzed phytochemically for phenolics (condensed tannins and hydrolyzable tannins) by colorimetry. Antioxidant activity was evaluated by quantitative assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Fe(3+)/phenanthroline. Antimicrobial activity was evaluated by the minimal inhibitory concentration test, and cytotoxicity was evaluated using human fibroblast cells (MRC-5). Inhibition of BaV-induced hemorrhagic activity was assessed after oral administration of the extract using pre-treatment, post-treatment and combined (BA plus AECf) treatment protocols. Inhibition of indirect hemolysis caused by phospholipase A2 (PLA2) was investigated in vitro. Interaction between AECf and BaV was investigated by SDS-PAGE electrophoresis, Western blot (Wb) and zymography. RESULTS: The phytochemical profile of AECf revealed ten secondary metabolite classes, and colorimetry showed high total phenolic and total (condensed and hydrolyzable) tannin content. AECf exhibited high antioxidant and antimicrobial potentials. The IC50 for the cytotoxic effect was 51.91 (46.86-57.50)µg/mL. Inhibition of BaV-induced hemorrhagic activity was significant in all the protocols, and inhibition of PLA2 activity was significant with the two highest concentrations. The BaV/AECf mixture produced the same bands as BaV by itself in SDS-PAGE and Wb although the bands were much fainter. Zymography confirmed the proteolytic activity of BaV, but when the venom was pre-incubated with AECf this activity was blocked. CONCLUSION: AECf was effective in reducing BaV-induced hemorrhagic activity when administered by the same route as that used in folk medicine and exhibited antioxidant and antimicrobial potentials.


Assuntos
Antibacterianos/farmacologia , Antivenenos/farmacologia , Connaraceae/química , Venenos de Crotalídeos/administração & dosagem , Hemorragia/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antibacterianos/química , Antioxidantes/farmacologia , Antivenenos/química , Bothrops , Brasil , Feminino , Hemorragia/metabolismo , Masculino , Medicina Tradicional/métodos , Camundongos , Fosfolipases A2/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Mordeduras de Serpentes/tratamento farmacológico , Taninos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...