Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 61(9): 4554-4570, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34423980

RESUMO

Bacterial glycoside hydrolase 1 (GH1) enzymes with 6-phospho-ß-galactosidase and 6-phospho-ß-glucosidase activities have the important task of releasing phosphorylated and nonphosphorylated monosaccharides into the cytoplasm. Curiously, dual 6-phospho-ß-galactosidase/6-phospho-ß-glucosidase (dual-phospho) enzymes have broad specificity and are able to hydrolyze galacto- and gluco-derived substrates. This study investigates the structure and substrate specificity of a GH family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglC. The enzyme structure has been solved, and sequence analysis, molecular dynamics simulations, and binding free energy calculations offered evidence of dual-phospho activity. Both test ligands p-nitrophenyl-ß-d-galactoside-6-phosphate (PNP6Pgal) and p-nitrophenyl-ß-d-glucoside-6-phosphate (PNP6Pglc) demonstrated strong binding to BlBglC although the pose and interactions of the PNP6Pglc triplicates were slightly more consistent. Interestingly, known specificity-inducing residues, Gln23 and Trp433, bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-BlBglC complex and to the ligand O4 hydroxyl group in the PNP6Pglc-BlBglC complex. Additionally, the BlBglC-His124 residue is a major contributor of hydrogen bonds to the PNP6Pgal O3 hydroxyl group but does not form any hydrogen bonds with PNP6Pglc. On the other hand, BlBglC residues Tyr173, Tyr301, Gln302, and Thr321 form hydrogen bonds with PNP6Pglc but not PNP6Pgal. These findings provide important details of the broad specificity of dual-phospho activity GH1 enzymes.


Assuntos
Bacillus licheniformis , Glucosidases , Bacillus licheniformis/metabolismo , Galactosidases , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
J Chem Inf Model ; 60(12): 6392-6407, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33166469

RESUMO

In bacteria, mono- and disaccharides are phosphorylated during the uptake processes through the vastly spread transport system phosphoenolpyruvate-dependent phosphotransferase. As an initial step in the phosphorylated disaccharide metabolism pathway, 6-phospho-ß-glucosidases and 6-phospho-ß-galactosidases play a crucial role by releasing phosphorylated and nonphosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. Here, an X-ray structure of a glycoside hydrolase family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglH, was determined at 2.2 Å resolution, and its substrate specificity was investigated. The sequence of BlBglH was compared to the sequences of 58 other GH1 enzymes using sequence alignments, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BlBglH was found to have sequence features characteristic of the 6-phospho-ß-glucosidase activity enzymes. Motif and structural observations highlighted the importance of loop L8 in 6-phospho-ß-glucosidase activity enzymes. To further affirm enzyme specificity, molecular docking and molecular dynamics simulations were performed using the crystallographic structure of BlBglH. Docking was carried out with a 6-phospho-ß-glucosidase enzyme activity positive and negative control ligand, followed by 400 ns of MD simulations. The positive and negative control ligands were PNP6Pglc and PNP6Pgal, respectively. PNP6Pglc maintained favorable interactions within the active site until the end of the MD simulation, while PNP6Pgal exhibited instability. The favorable binding of substrate stabilized the loops that surround the active site. Binding free energy calculations showed that the PNP6Pglc complex had a substantially lower binding energy compared to the PNP6Pgal complex. Altogether, the findings of this study suggest that BlBglH possesses 6-phospho-ß-glucosidase enzymatic activity and revealed sequence and structural differences between bacterial GH1 enzymes of various activities.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/metabolismo , Biologia Computacional , Glucosidases , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Especificidade por Substrato , Raios X
3.
PLoS One ; 13(6): e0198696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874288

RESUMO

The tertiary structure of proteins has been represented as a network, in which residues are nodes and their contacts are edges. Protein structure networks contain residues, called hubs or central, which are essential to form short connection pathways between any pair of nodes. Hence hub residues may effectively spread structural perturbations through the protein. To test whether modifications nearby to hub residues could affect the enzyme active site, mutations were introduced in the ß-glycosidase Sfßgly (PDB-ID: 5CG0) directed to residues that form an α-helix (260-265) and a ß-strand (335-337) close to one of its main hub residues, F251, which is approximately 14 Å from the Sfßgly active site. Replacement of residues A263 and A264, which side-chains project from the α-helix towards F251, decreased the rate of substrate hydrolysis. Mutation A263F was shown to weaken noncovalent interactions involved in transition state stabilization within the Sfßgly active site. Mutations placed on the opposite side of the same α-helix did not show these effects. Consistently, replacement of V336, which side-chain protrudes from a ß-strand face towards F251, inactivated Sfßgly. Next to V336, mutation S337F also caused a decrease in noncovalent interactions involved in transition state stabilization. Therefore, we suggest that mutations A263F, A264F, V336F and S337F may directly perturb the position of the hub F251, which could propagate these perturbations into the Sfßgly active site through short connection pathways along the protein network.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico/genética , beta-Glucosidase/química , Animais , Proteínas de Bactérias/genética , Celobiose/química , Ensaios Enzimáticos , Glicosídeos/química , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Nitrofenóis/química , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Spodoptera , beta-Glucosidase/genética
4.
Biochimie ; 148: 107-115, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29555372

RESUMO

Bifidobacterium is an important genus of probiotic bacteria colonizing the human gut. These bacteria can uptake oligosaccharides for the fermentative metabolism of hexoses and pentoses, producing lactate, acetate as well as short-chain fatty acids and propionate. These end-products are known to have important effects on human health. ß-glucosidases (EC 3.2.1.21) are pivotal enzymes for the metabolism and homeostasis of Bifidobacterium, since they hydrolyze small and soluble saccharides, typically producing glucose. Here we describe the cloning, expression, biochemical characterization and the first X-ray structure of a GH3 ß-glucosidase from the probiotic bacteria Bifidobacterium adolescentis (BaBgl3). The purified BaBgl3 showed a maximal activity at 45 °C and pH 6.5. Under the optimum conditions, BaBgl3 is highly active on 4-nitrophenyl-ß-d-glucopyranoside (pNPG) and, at a lesser degree, on 4-nitrophenyl-ß-d-xylopyranoside (pNPX, about 32% of the activity observed for pNPG). The 2.4 Šresolution crystal structure of BaBgl3 revealed a three-domain structure composed of a TIM barrel domain, which together with α/ß sandwich domain accommodate the active site and a third C-terminal fibronectin type III (FnIII) domain with unknown function. Modeling of the substrate in the active site indicates that an aspartate interacts with the hydroxyl group of the C6 present in pNPG but absent in pNPX, which explains the substrate preference. Finally, the enzyme is significantly stabilized by glycerol and galactose, resulting in considerable increase in the enzyme activity and its lifetime. The structural and biochemical studies presented here provide a deeper understanding of the molecular mechanisms of complex carbohydrates degradation utilized by probiotic bacteria as well as for the development of new prebiotic oligosaccharides.


Assuntos
Bifidobacterium adolescentis/enzimologia , Probióticos , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
5.
N Biotechnol ; 40(Pt B): 218-227, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28888962

RESUMO

ß-glucosidases are glycoside hydrolases able to cleave small and soluble substrates, thus producing monosaccharides. These enzymes are distributed among families GH1, GH2, GH3, GH5, GH9, GH30 and GH116, with GH1 and GH3 being the most relevant families with characterized enzymes to date. A recent transcriptomic analysis of the fungus Trichoderma harzianum, known for its increased ß-glucosidase activity as compared to Trichoderma reesei, revealed two enzymes from family GH1 with high expression levels. Here we report the cloning, recombinant expression, purification and crystallization of these enzymes, ThBgl1 and ThBgl2. A close inspection of the enzymatic activity of these enzymes surprisingly revealed a marked difference between them despite the sequence similarity (53%). ThBgl1 has an increased tendency to catalyze transglycosylation reaction while ThBgl2 acts more as a hydrolyzing enzyme. Detailed comparison of their crystal structures and the analysis of the molecular dynamics simulations reveal the presence of an asparagine residue N186 in ThBgl2, which is replaced by the phenylalanine F180 in ThBgl1. This single amino acid substitution seems to be sufficient to create a polar environment that culminates with an increased availability of water molecules in ThBgl2 as compared to ThBgl1, thus conferring stronger hydrolyzing character to the former enzyme.


Assuntos
Trichoderma/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Trichoderma/metabolismo , beta-Glucosidase/isolamento & purificação
6.
Data Brief ; 15: 340-343, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214196

RESUMO

Here the statistics concerning X-ray data processing and structure refinement are given, together with the substrate preference analysis for ThBgl1 and ThBgl2. Finally, the analysis of the influence of temperature and pH on the activities of both enzymes are shown.

7.
PLoS One ; 11(12): e0167978, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936116

RESUMO

The active site residues in GH1 ß-glycosidases are compartmentalized into 3 functional regions, involved in catalysis or binding of glycone and aglycone motifs from substrate. However, it still remains unclear how residues outside the active site modulate the enzymatic activity. To tackle this question, we solved the crystal structure of the GH1 ß-glycosidase from Spodoptera frugiperda (Sfßgly) to systematically map its residue contact network and correlate effects of mutations within and outside the active site. External mutations neighbouring the functional residues involved in catalysis and glycone-binding are deleterious, whereas mutations neighbouring the aglycone-binding site are less detrimental or even beneficial. The large dataset of new and previously characterized Sfßgly mutants supports that external perturbations are coherently transmitted to active site residues possibly through contacts and specifically disturb functional regions they interact to, reproducing the effects observed for direct mutations of functional residues. This allowed us to suggest that positions related to the aglycone-binding site are preferential targets for introduction of mutations aiming to further improve the hydrolytic activity of ß-glycosidases.


Assuntos
Aminoácidos/metabolismo , Glicosídeo Hidrolases/metabolismo , Animais , Domínio Catalítico , Celobiose/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Pichia/genética , Conformação Proteica , Spodoptera/enzimologia
8.
FEBS J ; 283(6): 1124-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26785700

RESUMO

Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the ß-glucosidase Sfßgly (ß-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfßgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfßgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfßgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins.


Assuntos
Proteínas/química , Substituição de Aminoácidos , Animais , Dicroísmo Circular , Estabilidade Enzimática , Temperatura Alta , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Espectrometria de Fluorescência , Spodoptera/enzimologia , Spodoptera/genética , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA