Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(15): 3081-3085, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353113

RESUMO

Thiols are a functional group commonly used for selective reactions in a biochemical setting because of their high nucleophilicity. Phosphorus nucleophiles can undergo some similar reactions to thiols, but remain underexploited in this setting. In this work we show that phosphine nucleophiles react cleanly and quickly with a dehydroalanine electrophile, itself generated from cysteine, to give a stable adduct in a peptide context. NMR reveals the product to be a phosphonium ion and indicates some backbone conformational constraint, possibly arising from transient carbonyl coordination. The reaction proceeded quickly, with a pseudo-first order rate constant of 0.126 min-1 at 1 mM peptide (80% conversion in 10 min), and with no detectable side products on the peptide. A broad peptide sequence scope and water-soluble phosphines with alkyl as well as aromatic groups were all shown to react efficiently. Phosphine addition proved to be efficient on nisin as a model Dha-containing biologically-derived peptide and on an mRNA-displayed peptide, as well as on TCEP-modified agarose for peptide capture from solution. This reaction thus presents a promising approach for modification of peptides for cargo attachment or altered physical properties in peptide discovery.


Assuntos
Fosfinas , Alanina/análogos & derivados , Sequência de Aminoácidos , Fosfinas/química , Compostos de Sulfidrila
2.
bioRxiv ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32869031

RESUMO

The adenosine analogue remdesivir has emerged as a front-line antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1.Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...