Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115683, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866054

RESUMO

This paper aimed at assessing total mercury concentration in seven common fish species (Auxis rochei, Caranx rhonchus, Sardina pilchardus, Sardinella aurita, Sardinella maderensis, Scomber colias and Trachurus trecae) and a relationship between Hg organotropism and food regimes along the Mauritanian Atlantic coast. Results show that total mercury concentration in fish collected along five sites ranged from 0.027 to 0.533 mg/kg dry weight. Significant differences were observed among species depending on feeding behavior. Muscle tissues of carnivorous fish presented significantly higher levels of total mercury than that of omnivorous fish, except for Scomber colias, suggesting mercury biomagnification through the food chain. Significant differences in mercury concentrations were observed between muscle tissues and liver, for Auxis rochei, Trachurus trecae, and Caranx rhonchus. The mean concentrations in the different species are however low and none of the concentration values exceed the World Health Organization's threshold for human consumption.


Assuntos
Mercúrio , Perciformes , Poluentes Químicos da Água , Humanos , Animais , Mercúrio/análise , Mauritânia , Sons Respiratórios , Peixes , Cadeia Alimentar , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
iScience ; 26(3): 106168, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876122

RESUMO

Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.

3.
R Soc Open Sci ; 7(10): 200889, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204461

RESUMO

Polar regions are currently warming at a rate above the global average. One issue of concern is the consequences on biodiversity in relation to the Northward latitudinal shift in distribution of temperate species. In the present study, lasting almost two years, we examined two phenological traits, i.e. the shell growth and behavioural rhythm of a recently re-established species in the high Arctic, the blue mussel Mytilus sp. We compared this with a native species, the Islandic scallop Chlamys islandica. We show marked differences in the examined traits between the two species. In Mytilus sp., a clear annual pattern of shell growth strongly correlated to the valve behaviour rhythmicity, whereas C. islandica exhibited a shell growth pattern with a total absence of annual rhythmicity of behaviour. The shell growth was highly correlated to the photoperiod for the mussels but weaker for the scallops. The water temperature cycle was a very weak parameter to anticipate the phenology traits of both species. This study shows that the new resident in the high Arctic, Mytilus sp., is a highly adaptive species, and therefore a promising bioindicator to study the consequences of biodiversity changes due to global warming.

4.
PLoS One ; 13(4): e0194174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617387

RESUMO

Shipping has increased dramatically in recent decades and oysters can hear them. We studied the interaction between noise pollution and trace metal contamination in the oyster Magallana gigas. Four oyster-groups were studied during a 14-day exposure period. Two were exposed to cadmium in the presence of cargo ship-noise ([Cd++]w ≈ 0.5 µg∙L-1; maximum sound pressure level 150 dBrms re 1 µPa), and 2 were exposed only to cadmium. The Cd concentration in the gills ([Cd]g) and the digestive gland ([Cd]dg), the valve closure duration, number of valve closures and circadian distribution of opening and closure, the daily shell growth-rate and the expression of 19 genes in the gills were studied. Oysters exposed to Cd in the presence of cargo ship-noise accumulated 2.5 times less Cd in their gills than did the controls without ship noise and their growth rate was 2.6 times slower. In the presence of ship noise, oysters were closed more during the daytime, and their daily valve activity was reduced. Changes in gene activity in the gills were observed in 7 genes when the Cd was associated with the ship noise. In the absence of ship noise, a change in expression was measured in 4 genes. We conclude that chronic exposure to cargo ship noise has a depressant effect on the activity in oysters, including on the volume of the water flowing over their gills (Vw). In turn, a decrease in the Vw and valve-opening duration limited metal exposure and uptake by the gills but also limited food uptake. This latter conclusion would explain the slowing observed in the fat metabolism and growth rate. Thus, we propose that cargo ship noise exposure could protect against metal bioaccumulation and affect the growth rate. This latter conclusion points towards a potential risk in terms of ecosystem productivity.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Ruído , Ostreidae/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Comportamento Animal , Brânquias/metabolismo , Ostreidae/genética , Ostreidae/metabolismo
5.
PLoS One ; 12(10): e0185918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020114

RESUMO

In this work, we study if ploidy (i.e. number of copies of chromosomes) in the oyster Crassostrea gigas may introduce differences in behavior and in its synchronization by the annual photoperiod. To answer to the question about the effect of the seasonal course of the photoperiod on the behavior of C. gigas according to its ploidy, we quantified valve activity by HFNI valvometry in situ for 1 year in both diploid and triploid oysters. Chronobiological analyses of daily, tidal and lunar rhythms were performed according the annual change of the photoperiod. In parallel, growth and gametogenesis status were measured and spawning events were detected by valvometry. The results showed that triploids had reduced gametogenesis, without spawning events, and approximately three times more growth than diploids. These differences in physiological efforts could explain the result that photoperiod (daylength and/or direction of daylength) differentially drives and modulates seasonal behavior of diploid and triploid oysters. Most differences were observed during long days (spring and summer), where triploids showed longer valve opening duration but lower opening amplitude, stronger daily rhythm and weaker tidal rhythm. During this period, diploids did major gametogenesis and spawning whereas triploids did maximal growth. Differences were also observed in terms of moonlight rhythmicity and neap-spring tidal cycle rhythmicity. We suggest that the seasonal change of photoperiod differentially synchronizes oyster behavior and biological rhythms according to physiological needs based on ploidy.


Assuntos
Comportamento Animal/fisiologia , Crassostrea/genética , Diploide , Fotoperíodo , Estações do Ano , Triploidia , Animais , Ritmo Circadiano , Crassostrea/crescimento & desenvolvimento
6.
PLoS One ; 12(10): e0185353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29069092

RESUMO

There is an increasing concern that anthropogenic noise could have a significant impact on the marine environment, but there is still insufficient data for most invertebrates. What do they perceive? We investigated this question in oysters Magallana gigas (Crassostrea gigas) using pure tone exposures, accelerometer fixed on the oyster shell and hydrophone in the water column. Groups of 16 oysters were exposed to quantifiable waterborne sinusoidal sounds in the range of 10 Hz to 20 kHz at various acoustic energies. The experiment was conducted in running seawater using an experimental flume equipped with suspended loudspeakers. The sensitivity of the oysters was measured by recording their valve movements by high-frequency noninvasive valvometry. The tests were 3 min tone exposures including a 70 sec fade-in period. Three endpoints were analysed: the ratio of responding individuals in the group, the resulting changes of valve opening amplitude and the response latency. At high enough acoustic energy, oysters transiently closed their valves in response to frequencies in the range of 10 to <1000 Hz, with maximum sensitivity from 10 to 200 Hz. The minimum acoustic energy required to elicit a response was 0.02 m∙s-2 at 122 dBrms re 1 µPa for frequencies ranging from 10 to 80 Hz. As a partial valve closure cannot be differentiated from a nociceptive response, it is very likely that oysters detect sounds at lower acoustic energy. The mechanism involved in sound detection and the ecological consequences are discussed.


Assuntos
Audição , Ostreidae/fisiologia , Animais
7.
Sci Rep ; 7(1): 3480, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615697

RESUMO

As a marine organism, the oyster Crassostrea gigas inhabits a complex biotope governed by interactions between the moon and the sun cycles. We used next-generation sequencing to investigate temporal regulation of oysters under light/dark entrainment and the impact of harmful algal exposure. We found that ≈6% of the gills' transcriptome exhibits circadian expression, characterized by a nocturnal and bimodal pattern. Surprisingly, a higher number of ultradian transcripts were also detected under solely circadian entrainment. The results showed that a bloom of Alexandrium minutum generated a remodeling of the bivalve's temporal structure, characterized by a loss of oscillations, a genesis of de novo oscillating transcripts, and a switch in the period of oscillations. These findings provide unprecedented insights into the diurnal landscape of the oyster's transcriptome and pleiotropic remodeling due to toxic algae exposure, revealing the intrinsic plasticity of the cycling transcriptome in oysters.


Assuntos
Crassostrea/metabolismo , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , Transcriptoma , Animais , Relógios Circadianos , Ritmo Circadiano , Toxinas Marinhas
8.
Sci Rep ; 6: 32435, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577847

RESUMO

Although the prevailing paradigm has held that the polar night is a period of biological quiescence, recent studies have detected noticeable activity levels in marine organisms. In this study, we investigated the circadian rhythm of the scallop Chlamys islandica by continuously recording the animal's behaviour over 3 years in the Arctic (Svalbard). Our results showed that a circadian rhythm persists throughout the polar night and lasts for at least 4 months. Based on observations across three polar nights, we showed that the robustness and synchronicity of the rhythm depends on the angle of the sun below the horizon. The weakest rhythm occurred at the onset of the polar night during the nautical twilight. Surprisingly, the circadian behaviour began to recover during the darkest part of the polar night. Because active rhythms optimize the fitness of an organism, our study brings out that the scallops C. islandica remain active even during the polar night.

9.
Environ Sci Technol ; 48(1): 797-803, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328039

RESUMO

There is increasing evidence that epigenetics can play a key role in the etiology of diseases engendered by chronic pollutant exposure. Although epigenetics has received significant attention in the field of biomedicine during the last years, epigenetics research is surprisingly very limited in ecotoxicology. The aim of the present study was to investigate the possible effects of low-dose cadmium exposure on the DNA methylation profile in a critically endangered fish species, the European eel. Eels were exposed to environmentally realistic concentrations of cadmium (0.4 and 4 µg·L(-1)) during 45 days. The global CpG methylation status of eel liver was determined by means of a homemade ELISA assay. We then used a methylation-sensitive arbitrarily primed PCR method to identify genes that are differentially methylated between control and Cd-exposed eels. Our results show that cadmium exposure is associated with DNA hypermethylation and with a decrease in total RNA synthesis. Among hypermethylated sequences identified, several fragments presented high homologies with genes encoding for proteins involved in intracellular trafficking, lipid biosynthesis, and phosphatidic acid signaling pathway. In addition, few fragments presented high homologies with retrotransposon-like sequences. Our study illustrates how DNA methylation can be involved in the chronic stress response to Cd in fish.


Assuntos
Anguilla/genética , Cádmio/toxicidade , Metilação de DNA/efeitos dos fármacos , Espécies em Perigo de Extinção , Exposição Ambiental , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Europa (Continente) , Modelos Lineares , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/efeitos dos fármacos
10.
Environ Monit Assess ; 182(1-4): 155-70, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21229302

RESUMO

The high-frequency measurements of valve activity in bivalves (e.g., valvometry) over a long period of time and in various environmental conditions allow a very accurate study of their behaviors as well as a global analysis of possible perturbations due to the environment. Valvometry uses the bivalve's ability to close its shell when exposed to a contaminant or other abnormal environmental conditions as an alarm to indicate possible perturbations in the environment. The modeling of such high-frequency serial valvometry data is statistically challenging, and here, a nonparametric approach based on kernel estimation is proposed. This method has the advantage of summarizing complex data into a simple density profile obtained from each animal at every 24-h period to ultimately make inference about time effect and external conditions on this profile. The statistical properties of the estimator are presented. Through an application to a sample of 16 oysters living in the Bay of Arcachon (France), we demonstrate that this method can be used to first estimate the normal biological rhythms of permanently immersed oysters and second to detect perturbations of these rhythms due to changes in their environment. We anticipate that this approach could have an important contribution to the survey of aquatic systems.


Assuntos
Monitoramento Ambiental/métodos , Modelos Animais , Ostreidae/fisiologia , Poluição Química da Água/estatística & dados numéricos , Animais , Monitoramento Ambiental/instrumentação , França , Modelos Químicos , Estatísticas não Paramétricas , Poluição Química da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...