Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138656

RESUMO

Reinforced concrete bridges deteriorate over time, therefore displaying a regular need for structural assessment and diagnosis. The reasons for their deterioration are often the following: (a) intensive use, (b) very dynamic loads acting for long periods of time, (c) and sometimes chemical processes that damage the concrete or lead to corrosion of the reinforcement. Assuming the hypothesis that both the stiffness of the material and its density change over time, these parameters shall be identified, preferably in a non-destructive way, in different locations of the investigated structure. Such task is expected to be possibly exerted by means of one or more tests, which must not be laborious or cause the bridge to be out of service for a long time. In this paper, an attempt is made to prepare a procedure based on dynamic tests supplemented with several static measurements, in order to identify the largest number of parameters in the shortest possible time, within an inverse analysis methodology. The proposed procedure employs a popular algorithm for minimizing the objective function, i.e., trust region in the least square framework, as part of the inverse analysis, where the difference between measurements made in situ and those calculated numerically is minimized. As a result of the work performed, optimal sets of measurements and test configurations are proposed, allowing the searched parameters to be found in a reliable manner, with the greatest possible precision.

2.
Sci Rep ; 13(1): 22423, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104206

RESUMO

Recent advances in knowledge suggest that micro- and nanoplastics pose a threat to plant health, however, the responses of plants to this stressor are not well-known. Here we examined the response of plant cell defence mechanisms to nanoparticles of commonly used plastic, polystyrene. We used plant cell cultures of widely cultivated plants, the monocots wheat and barley (Triticum aestivum L., Hordeum vulgare L.) and the dicots carrot and tomato (Daucus carota L., Solanum lycopersicum L.). We measured the activities of enzymes involved in the scavenging of reactive oxygen species and nonenzymatic antioxidants and we estimated potential damages in plant cell structures and functioning via lipid peroxidation and DNA methylation levels. Our results demonstrate that the mode of action of polystyrene nanoparticles on plant cells involves oxidative stress. However, the changes in plant defence mechanisms are dependent on plant species, exposure time and nanoplastic concentrations. In general, both monocots showed similar responses to nanoplastics, but the carrot followed more the response of monocots than a second dicot, a tomato. Higher H2O2, lipid peroxidation and lower enzyme activities scavenging H2O2 suggest that tomato cells may be more susceptible to polystyrene-induced stress. In conclusion, polystyrene nanoplastics induce oxidative stress and the response of the plant defense mechanisms involving several chain reactions leading to oxidoreductive homeostasis.


Assuntos
Nanopartículas , Poliestirenos , Células Vegetais , Peróxido de Hidrogênio , Microplásticos , Antioxidantes , Plantas , Mecanismos de Defesa
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768486

RESUMO

Despite intensive optimization efforts, developing an efficient sequence-specific CRISPR/Cas-mediated genome editing method remains a challenge, especially in polyploid cereal species such as wheat. Validating the efficacy of nuclease constructs prior to using them in planta is, thus, a major step of every editing experiment. Several construct evaluation strategies were proposed, with PEG-mediated plasmid transfection of seedling-derived protoplasts becoming the most popular. However, the usefulness of this approach is affected by associated construct copy number bias and chromatin relaxation, both influencing the outcome. Therefore, to achieve a reliable evaluation of CRISPR/Cas9 constructs, we proposed a system based on an Agrobacterium-mediated transformation of established wheat cell suspension cultures. This system was used for the evaluation of a CRISPR/Cas9 construct designed to target the ABA 8'-hydroxylase 1 gene. The efficiency of editing was verified by cost-effective means of Sanger sequencing and bioinformatic analysis. We discuss advantages and potential future developments of this method in contrast to other in vitro approaches.


Assuntos
Sistemas CRISPR-Cas , Triticum , Triticum/genética , Edição de Genes/métodos , Agrobacterium/genética , Técnicas de Cultura de Células
4.
N Biotechnol ; 60: 183-188, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115638

RESUMO

According to a predominant interpretation of the C-528/16 judgment of the Court of Justice of the European Union, mutants resulting from gene editing, even those featuring only single nucleotide variants, should be subject to the authorization procedures designed for organisms developed through genetic modification (i.e. insertion of large DNA fragments). In this article, we illustrate practical problems with the authorization of products of gene editing in the EU. On the basis of these problems, we analyze the influence of the current interpretation of EU legislation and judgment on the practical ability to authorize and detect such products on the EU market. We show that the predominant interpretation of the judgment leads to legally unacceptable consequences, in particular to the violation of the principle of proportionality with regard to individuals who wish to develop and market products of gene editing. As a result of our considerations, we show that the C-528/16 judgment did not need to be interpreted in the dominant way.


Assuntos
Biotecnologia/legislação & jurisprudência , Edição de Genes/legislação & jurisprudência , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , União Europeia , Humanos
5.
Front Plant Sci ; 10: 1423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749825

RESUMO

Rapeseed is an essential crop which is used in many different areas as edible oil, biodiesel, lubricant, and feed. It is one of the most popular oil crops in Europe (63% of oilseeds production in 2017). The current study highlights the potential for further rapeseed development in European Union (EU), with special emphasis on Germany (19% of EU production) and Poland (12% of EU production). The study focused on three factors: cultivation area, volume of production and the numbers of Intellectual Property Rights (IPR), particularly patents granted for rapeseed or rapeseed-related inventions and plant variety rights. Possible further obstacles to development, such as current legal framework, were also taken under consideration. The analyzed statistical data shows that both the cultivation area, as well as the volume of production of rapeseed fluctuated in the last decade in both examined countries, while the numbers for European patent publications and Community Plant Variety Rights showed a rising trend, indicating investments in the Research and Development (R&D) of the crop. The data analysis seems to confirm a hypothesis that there is a potential for the development of rapeseed as a versatile, multi-use crop; however, the current EU GMO policies and a legal uncertainty as to the status of products of certain modern gene editing techniques may hamper making optimal use of this potential.

6.
N Biotechnol ; 51: 49-56, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30779963

RESUMO

The comparatively low adoption rate of GMO products in the European Union (EU) market seems to be connected with the strictness of authorization regulations and inefficiency of the authorization process itself. These problems will apply to any product deemed to be a GMO that could potentially be marketable in the EU. Since modern methods of plant breeding involving oligonucleotide-directed mutagenesis (ODMs) or site-directed nucleases (SDNs), including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are becoming ever more popular, it is crucial to establish whether the products of such new breeding techniques (NBTs), in particular those which involve precise methods of mutagenesis, are exempted from the EU legislation on GMOs or not. Legal uncertainty as to their status may result in reluctance to invest in such methods and develop them further. Here, developments are presented in the legal classification of certain NBTs products in the context of recent decisions and jurisprudence. The socioeconomic aspects of GMO adoption in both global and European contexts are discussed. The legal and practical landscape of GMO regulation in the EU is presented and how it may pose an obstacle to investment and the development of new products. The latest jurisprudence (e.g., Case C-528/16) [1] on the interpretation of the legal concept of GMOs and the scope of the legislation are analyzed, with the conclusion that the strict regulations will probably also apply to products of the NBTs involving precise methods of mutagenesis. This in turn will probably result in the restriction of their application in the development of new plant varieties in the EU.


Assuntos
Biotecnologia/legislação & jurisprudência , Organismos Geneticamente Modificados/genética , Melhoramento Vegetal/legislação & jurisprudência , União Europeia
7.
Appl Biochem Biotechnol ; 185(1): 207-220, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29110175

RESUMO

In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.


Assuntos
Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Zea mays/genética
8.
Plant Physiol Biochem ; 123: 160-169, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29247936

RESUMO

This study examines how salt stress interacts with bacterial infection at the metabolic level. We measured chlorophyll a fluorescence as well as profiles of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), NADP-isocitrate dehydrogenase (NADP-ICDH) and fumarase activities, malic and citric acids contents and the expression of NADP-ICDH and NADP-ME in the organ-dependent (root vs leaves) response of cucumber plants exposed to individual or sequential action of salt stress (50 mM or 100 mM NaCl) and Pseudomonas syringae pv lachrymans (Psl). NaCl treatment, Psl infection and the combination of these stresses caused disturbances in the activity of photosystem II which were suggested to specifically transmit the stress signals. PEPC and NADP-ME were induced in cucumber plants under stress, confirming that in C3 plants they function in defence responses. The profiles of malate and citrate contents, PEPC as well as NADP-ICDH and NADP-ME activities and gene expression in response to a combination of salt and pathogen stresses differed from those provoked by individual stress with respect to the direction, intensity and timing. The results indicated that the most pronounced defence response related to the readjustment of the carbon metabolism was observed in the leaves of plants exposed to combined stress. Intense activity changes of NADPH-generating enzymes, NADP-ICDH and NADP-ME, characterized the tailored response to combined stress and could be important for the integration of defence mechanisms between organs.


Assuntos
Carbono/metabolismo , Cucumis sativus , Doenças das Plantas/microbiologia , Pseudomonas syringae , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia
9.
Trends Biotechnol ; 32(2): 70-3, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24418332

RESUMO

The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events.


Assuntos
Inocuidade dos Alimentos/métodos , Alimentos Geneticamente Modificados/normas , Plantas Geneticamente Modificadas , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...