Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168818

RESUMO

Anionic antimicrobial peptides constitute an integral component of animal innate immunity, however the mechanisms of their antifungal activity are still poorly understood. The action of a unique Galleria mellonella anionic peptide 2 (AP2) against fungal pathogen Candida albicans was examined using different microscopic techniques and Fourier transform infrared (FTIR) spectroscopy. Although the exposure to AP2 decreased the survival rate of C. albicans cells, the viability of protoplasts was not affected, suggesting an important role of the fungal cell wall in the peptide action. Atomic force microscopy showed that the AP2-treated cells became decorated with numerous small clods and exhibited increased adhesion forces. Intensified lomasome formation, vacuolization, and partial distortion of the cell wall was also observed. FTIR spectroscopy suggested AP2 interactions with the cell surface proteins, leading to destabilization of protein secondary structures. Regardless of the anionic character of the whole AP2 molecule, bioinformatics analyses revealed the presence of amphipathic α-helices with exposed positively charged lysine residues. High content of the α-helical structure was confirmed after deconvolution of the IR absorption spectrum and during circular dichroism measurements. Our results indicated that the antimicrobial properties of G. mellonella AP2 rely on the same general characteristics found in cationic defense peptides.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mariposas/química , Peptídeos/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Candida albicans/ultraestrutura , Parede Celular/efeitos dos fármacos , Proteínas de Membrana/química , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Insect Physiol ; 105: 18-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29289504

RESUMO

A lipid-binding protein apolipophorin III (apoLp-III), an exchangeable component of lipophorin particles, is involved in lipid transport and immune response in insects. In Galleria mellonella, apoLp-III binding to high-density lipophorins and formation of low-density lipophorin complexes upon immune challenge was reported. However, an unanswered question remains whether apoLp-III could form different complexes in a pathogen-dependent manner. Here we report on pathogen- and time-dependent alterations in the level of apoLp-III free and lipophorin-bound form that occur in the hemolymph and hemocytes shortly after immunization of G. mellonella larvae with different pathogens, i.e. Gram-negative bacterium Escherichia coli, Gram-positive bacterium Micrococcus luteus, yeast-like fungus Candida albicans, and filamentous fungus Fusarium oxysporum. These changes were accompanied by differently persistent re-localization of apoLp-III in the hemocytes. The apoLp-III-interacting proteins were recovered from immune hemolymph by affinity chromatography on a Sepharose bed with immobilized anti-apoLp-III antibodies. ApoLp-I, apoLp-II, hexamerin, and arylphorin were identified as main components that bound to apoLp-III; the N-terminal amino acid sequences of G. mellonella apoLp-I and apoLp-II were determined for the first time. In the recovered complexes, the pathogen-dependent differences in the content of individual apolipophorins were detected. Apolipophorins may thus be postulated as signaling molecules responding in an immunogen-dependent manner in early steps of G. mellonella immune response.


Assuntos
Apolipoproteínas/metabolismo , Mariposas/imunologia , Animais , Hemócitos/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Mariposas/metabolismo
3.
Microbiol Res ; 193: 121-131, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825480

RESUMO

The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and ß-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.


Assuntos
Antifúngicos/farmacologia , Apoptose , Candida albicans/efeitos dos fármacos , Lepidópteros/enzimologia , Muramidase/farmacologia , Animais , Candida albicans/fisiologia , Viabilidade Microbiana/efeitos dos fármacos
4.
Peptides ; 68: 105-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25579437

RESUMO

Apolipophorin III (apoLp-III), a lipid-binding protein and an insect homolog of human apolipoprotein E, plays an important role in lipid transport and immune response in insects. In the present study, we have demonstrated a correlation in time between changes in the apoLp-III abundance occurring in the hemolymph, hemocytes, and fat body after immunization of Galleria mellonella larvae with Gram-negative bacteria Escherichia coli, Gram-positive bacteria Micrococcus luteus, yeast Candida albicans, and a filamentous fungus Fusarium oxysporum. Using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies, the profile of apoLp-III forms in G. mellonella larvae challenged with the bacteria and fungi has been analyzed. Besides the major apoLp-III protein (pI=6.5), one and three additional apoLp-III forms differing in the pI value have been detected, respectively, in the hemolymph, hemocytes, and fat body of non-immunized insects. Also, evidence has been provided that particular apoLp-III-derived polypeptides appear after the immune challenge and are present mainly in the hemolymph and hemocytes. The time of their appearance and persistence in the hemolymph was dependent on the pathogen used. At least two of the apoLp-III forms detected in hemolymph bound to the microbial cell surface. The increasing number of hemolymph apoLp-III polypeptides and differences in their profiles observed in time after the challenge with different immunogens confirmed the important role of apoLp-III in discriminating between pathogens by the insect defense system and in antibacterial as well as antifungal immune response.


Assuntos
Apolipoproteínas/sangue , Proteínas de Insetos/sangue , Mariposas/metabolismo , Animais , Candida albicans/imunologia , Cumarínicos/imunologia , Escherichia coli/imunologia , Corpo Adiposo/metabolismo , Hemolinfa/metabolismo , Imunidade Inata , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Micrococcus luteus/imunologia , Mariposas/imunologia , Mariposas/microbiologia , Especificidade de Órgãos , Isoformas de Proteínas/sangue
5.
Peptides ; 53: 194-201, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24472857

RESUMO

The lysozymes are well known antimicrobial polypeptides exhibiting antibacterial and antifungal activities. Their antibacterial potential is related to muramidase activity and non-enzymatic activity resembling the mode of action of cationic defense peptides. However, the mechanisms responsible for fungistatic and/or fungicidal activity of lysozyme are still not clear. In the present study, the anti-Candida albicans activity of Galleria mellonella lysozyme and anionic peptide 2 (AP2), defense factors constitutively present in the hemolymph, was examined. The lysozyme inhibited C. albicans growth in a dose-dependent manner. The decrease in the C. albicans survival rate caused by the lysozyme was accompanied by a considerable reduction of the fungus metabolic activity, as revealed by LIVE/DEAD staining. In contrast, although AP2 reduced C. albicans metabolic activity, it did not influence its survival rate. Our results suggest fungicidal action of G. mellonella lysozyme and fungistatic activity of AP2 toward C. albicans cells. In the presence of AP2, the anti-C. albicans activity of G. mellonella lysozyme increased. Moreover, when the fungus was incubated with both defense factors, true hyphae were observed besides pseudohyphae and yeast-like C. albicans cells. Atomic force microscopy analysis of the cells exposed to the lysozyme and/or AP2 revealed alterations in the cell surface topography and properties in comparison with the control cells. The results indicate synergistic action of G. mellonella AP2 and lysozyme toward C. albicans. The presence of both factors in the hemolymph of naive larvae suggests their important role in the early stages of immune response against fungi in G. mellonella.


Assuntos
Hemolinfa/química , Mariposas/química , Muramidase/farmacologia , Peptídeos/farmacologia , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...