Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci ; 552020.
Artigo em Inglês | MEDLINE | ID: mdl-34121767

RESUMO

In this work, we perform high accuracy measurements of thermophysical properties for the National Institute of Standards and Technology standard reference material for 316L stainless steel. As these properties can be sensitive to small changes in elemental composition even within the allowed tolerances for an alloy class, by selecting a publicly available standard reference material for study our results are particularly useful for the validation of multiphysics models of industrial metal processes. An ohmic pulse-heating system was used to directly measure the electrical resistivity, enthalpy, density, and thermal expansion as functions of temperature. This apparatus applies high current pulses to heat wire-shaped samples from room temperature to metal vaporization. The great advantage of this particular pulse-heating apparatus is the very short experimental duration of 50 µs, which is faster than the collapse of the liquid wire due to gravitational forces, as well as that it prevents any chemical reactions of the hot liquid metal with its surroundings. Additionally, a differential scanning calorimeter was used to measure specific heat capacity from room temperature to around 1400 K. All data are accompanied by uncertainties according to the guide to the expression of uncertainty in measurement.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34877160

RESUMO

Several welds and associated heat-affected zones (HAZs) on two API X70 and two API X52 pipes were tested to determine the fatigue crack growth rate (FCGR) in pressurized hydrogen gas and assess the area of the pipe that was most susceptible to fatigue when subjected to hydrogen gas. The relationship between FCGRs for welds and HAZs compared to base metal is discussed relative to local residual stresses, differences in the actual path of the crack, and hydrogen pressure effects.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34877134

RESUMO

Bragg edge neutron transmission imaging was used to characterize the spatial distribution of thermally induced residual strains in a steel armor plate welded with a hybrid laser arc process. This residual strain distribution was compared to the spatial development of mechanical strain during uniaxial deformation. By correlating the strain measurements of both methods, the failure mechanism was determined in armor welds joined with this process. Weld failure consistently occurred in the subcritical heat-affected zone where mechanical strain accumulation in softened martensitic parent material was superimposed upon the weld region containing the highest residual thermally induced strain.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26958436

RESUMO

In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of "drop-in" fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...