Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Neuroimmune Pharmacol ; 19(1): 29, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874861

RESUMO

The opioid epidemic has received considerable attention, but the impact on perinatal opioid-exposed (POE) offspring remains underexplored. This study addresses the emerging public health challenge of understanding and treating POE children. We examined two scenarios using preclinical models: offspring exposed to oxycodone (OXY) in utero (IUO) and acute postnatal OXY (PNO). We hypothesized exposure to OXY during pregnancy primes offspring for neurodevelopmental deficits and severity of deficits is dependent on timing of exposure. Notable findings include reduced head size and brain weight in offspring. Molecular analyses revealed significantly lower levels of inflammasome-specific genes in the prefrontal cortex (PFC). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) highlighted the enrichment of genes associated with mitochondrial and synapse dysfunction in POE offspring. Western blot analysis validated IPA predictions of mitochondrial dysfunction in PFC-derived synaptosomes. Behavioral studies identified significant social deficits in POE offspring. This study presents the first comparative analysis of acute PNO- and IUO-offspring during early adolescence finding acute PNO-offspring have considerably greater deficits. The striking difference in deficit severity in acute PNO-offspring suggests that exposure to opioids in late pregnancy pose the greatest risk for offspring well-being.


Assuntos
Analgésicos Opioides , Oxicodona , Efeitos Tardios da Exposição Pré-Natal , Animais , Oxicodona/toxicidade , Gravidez , Feminino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Masculino , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/toxicidade , Comportamento Animal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transtornos do Neurodesenvolvimento/induzido quimicamente , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
3.
ACS Omega ; 9(3): 3164-3172, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284070

RESUMO

Over the past few decades, it has been well established that gut microbiota-derived metabolites can disrupt gut function, thus resulting in an array of diseases. Notably, phenylacetylglutamine (PAGln), a bacterial derived metabolite, has recently gained attention due to its role in the initiation and progression of cardiovascular and cerebrovascular diseases. This meta-organismal metabolite PAGln is a byproduct of amino acid acetylation of its precursor phenylacetic acid (PAA) from a range of dietary sources like egg, meat, dairy products, etc. The microbiota-dependent metabolism of phenylalanine produces PAA, which is a crucial intermediate that is catalyzed by diverse microbial catalytic pathways. PAA conjugates with glutamine and glycine in the liver and kidney to predominantly form phenylacetylglutamine in humans and phenylacetylglycine in rodents. PAGln is associated with thrombosis as it enhances platelet activation mediated through the GPCRs receptors α2A, α2B, and ß2 ADRs, thereby aggravating the pathological conditions. Clinical evidence suggests that elevated levels of PAGln are associated with pathology of cardiovascular, cerebrovascular, and neurological diseases. This Review further consolidates the microbial/biochemical synthesis of PAGln and discusses its role in the above pathophysiologies.

4.
Viruses ; 15(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766354

RESUMO

In the 21st century, the effects of HIV-associated neurocognitive disorders (HAND) have been significantly reduced in individuals due to the development of antiretroviral therapies (ARTs). However, the growing epidemic of polysubstance use (PSU) has led to concern for the effects of PSU on HIV-seropositive individuals. To effectively treat individuals affected by HAND, it is critical to understand the biological mechanisms affected by PSU, including the identification of novel markers. To fill this important knowledge gap, we used an in vivo HIV-1 Transgenic (HIV-1 Tg) animal model to investigate the effects of the combined use of chronic methamphetamine (METH) and oxycodone (oxy). A RNA-Seq analysis on the striatum-a brain region that is primarily targeted by both HIV and drugs of abuse-identified key differentially expressed markers post-METH and oxy exposure. Furthermore, ClueGO analysis and Ingenuity Pathway Analysis (IPA) revealed crucial molecular and biological functions associated with ATP-activated adenosine receptors, neuropeptide hormone activity, and the oxytocin signaling pathway to be altered between the different treatment groups. The current study further reveals the harmful effects of chronic PSU and HIV infection that can subsequently impact neurological outcomes in polysubstance users with HAND.


Assuntos
Infecções por HIV , HIV-1 , Metanfetamina , Animais , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Oxicodona/farmacologia , RNA-Seq , Transtornos Neurocognitivos , HIV-1/genética , Metanfetamina/farmacologia
5.
Brain Behav Immun Health ; 32: 100669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37588011

RESUMO

Maternal opioid use poses a significant health concern not just to the expectant mother but also to the fetus. Notably, increasing numbers of children born suffering from neonatal opioid withdrawal syndrome (NOWS) further compounds the crisis. While epidemiological research has shown the heightened risk factors associated with NOWS, little research has investigated what molecular mechanisms underly the vulnerabilities these children carry throughout development and into later life. To understand the implications of in utero and post-natal opioid exposure on the developing brain, we sought to assess the response to one of the most common pediatric injuries: minor traumatic brain injury (mTBI). Using a rat model of in utero and post-natal oxycodone (IUO) exposure and a low force weight drop model of mTBI, we show that not only neonatal opioid exposure significantly affects neuroinflammation, brain metabolites, synaptic proteome, mitochondrial function, and altered behavior in juvenile rats, but also, in conjunction with mTBI these aberrations are further exacerbated. Specifically, we observed long term metabolic dysregulation, neuroinflammation, alterations in synaptic mitochondria, and impaired behavior were impacted severely by mTBI. Our research highlights the specific vulnerability caused by IUO exposure to a secondary stressor such as later life brain injury. In summary, we present a comprehensive study to highlight the damaging effects of prenatal opioid abuse in conjunction with mild brain injury on the developing brain.

6.
J Neuroimmune Pharmacol ; 18(3): 413-426, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37351737

RESUMO

Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found synaptic protein alterations, especially upregulation of synaptophysin in IUO-withdrawal animals. RT-qPCR further validated immune dysfunction in the central nervous system (CNS). Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning IUO animals. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal. Graphical Abstract.


Assuntos
Nicotina , Agonistas Nicotínicos , Gravidez , Animais , Feminino , Criança , Humanos , Adolescente , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Oxicodona/efeitos adversos
7.
Res Sq ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066266

RESUMO

Perinatal exposure to prescription opioids pose a critical public health risk. Notably, research has found significant neurodevelopmental and behavioral deficits between in utero (IUO) and postnatal (PNO) oxycodone-exposed offspring but there is a notable gap in knowledge regarding the interaction of these groups to other drug exposure, particularly nicotine exposure. Nicotine's widespread use represents a ubiquitous clinical interaction that current research does not address. Children often experiment with drugs and risky behavior; therefore, adolescence is a key timepoint to characterize. This study employed an integrated systems approach to investigate escalating nicotine exposure in adolescence and subsequent nicotine withdrawal in the IUO- and PNO-offspring. Western blot analysis found alterations of the blood-brain barrier (B.B.B.) and synaptic proteins. RT-qPCR further validated immune dysfunction in the central nervous system (CNS) consistent with compromised B.B.B. Peripheral nicotine metabolism was consistent with increased catabolism of nicotine concerning PNO & IUO, a predictor of greater addiction risk. Lastly, behavioral assays found subtle deficits to withdrawal in nociception and anxiety-like behavior. This study showed, for the first time, the vulnerabilities of PNO- and IUO-exposed groups concerning nicotine use during early adolescence and withdrawal.

8.
Cells ; 12(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980307

RESUMO

Recently, the long-term use of sedative agents in the neonatal intensive care unit (NICU) has raised concerns about neurodevelopmental outcomes in exposed neonates. Midazolam (MDZ), a common neonatal sedative in the NICU, has been suggested to increase learning disturbances and cognitive impairment in children. However, molecular mechanisms contributing to such outcomes with long-term MDZ use during the early stages of life remain unclear. In this study, we for the first time elucidate the role of brain-derived extracellular vesicles (BDEVs), including mining the BDEV proteome post long-term MDZ exposure during early development. Employing our previously established rodent model system that mimics the exposure of MDZ in the NICU using an increasing dosage regimen, we isolated BDEVs from postnatal 21-days-old control and MDZ groups using a differential sucrose density gradient. BDEVs from the control and MDZ groups were then characterized using a ZetaView nanoparticle tracking analyzer and transmission electron microscopy analysis. Next, using RT-qPCR, we examined the expression of key ESCRT-related genes involved in EV biogenesis. Lastly, using quantitative mass spectrometry-based proteomics, we mined the BDEV protein cargo that revealed key differentially expressed proteins and associated molecular pathways to be altered post long-term MDZ exposure. Our study characterized the proteome in BDEV cargo from long-term MDZ exposure at early development. Importantly, we identified and validated the expression of YWHAH as a potential target for further characterization of its downstream mechanism and a potential biomarker for the early onset of neurodevelopment and neurodegenerative diseases. Overall, the present study demonstrated long-term exposure to MDZ at early development stages could influence BDEV protein cargo, which potentially impact neural functions and behavior at later stages of development.


Assuntos
Proteínas 14-3-3 , Vesículas Extracelulares , Midazolam , Animais , Ratos , Biomarcadores , Encéfalo , Vesículas Extracelulares/metabolismo , Hipnóticos e Sedativos/efeitos adversos , Midazolam/efeitos adversos , Midazolam/farmacologia , Modelos Biológicos , Proteoma
9.
Neural Comput Appl ; 35(11): 8259-8279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36532883

RESUMO

Pneumonia is an acute respiratory infection caused by bacteria, viruses, or fungi and has become very common in children ranging from 1 to 5 years of age. Common symptoms of pneumonia include difficulty breathing due to inflamed or pus and fluid-filled alveoli. The United Nations Children's Fund reports nearly 800,000 deaths in children due to pneumonia. Delayed diagnosis and overpriced tests are the prime reason for the high mortality rate, especially in underdeveloped countries. A time and cost-efficient diagnosis tool: Chest X-rays, was thus accepted as the standard diagnostic test for pediatric pneumonia. However, the lower radiation levels for diagnosis in children make the task much more onerous and time-consuming. The mentioned challenges initiate the need for a computer-aided detection model that is instantaneous and accurate. Our work proposes a stacked ensemble learning of deep learning-based features for pediatric pneumonia classification. The extracted features from the global average pooling layer of the fine-tuned Xception model pretrained on ImageNet weights are sent to the Kernel Principal Component Analysis for dimensionality reduction. The dimensionally reduced features are further trained and validated on the stacking classifier. The stacking classifier consists of two stages; the first stage uses the Random-Forest classifier, K-Nearest Neighbors, Logistic Regression, XGB classifier, Support Vector Classifier (SVC), Nu-SVC, and MLP classifier. The second stage operates on Logistic Regression using the first stage predictions for the final classification with Stratified K-fold cross-validation to prevent overfitting. The model was tested on the publicly available pediatric pneumonia dataset, achieving an accuracy of 98.3%, precision of 99.29%, recall of 98.36%, F1-score of 98.83%, and an AUC score of 98.24%. The performance shows its reliability for real-time deployment in assisting radiologists and physicians.

10.
Multimed Tools Appl ; 82(14): 21311-21351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36281318

RESUMO

Pediatric pneumonia has drawn immense awareness due to the high mortality rates over recent years. The acute respiratory infection caused by bacteria, viruses, or fungi infects the lung region and hinders oxygen transport, making breathing difficult due to inflamed or pus and fluid-filled alveoli. Being non-invasive and painless, chest X-rays are the most common modality for pediatric pneumonia diagnosis. However, the low radiation levels for diagnosis in children make accurate detection challenging. This challenge initiates the need for an unerring computer-aided diagnosis model. Our work proposes Contrast Limited Adaptive Histogram Equalization for image enhancement and a stacking classifier based on the fusion of deep learning-based features for pediatric pneumonia diagnosis. The extracted features from the global average pooling layers of the fine-tuned MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated for the final classification using a stacked ensemble classifier. The stacking classifier uses Support Vector Classifier, Nu-SVC, Logistic Regression, K-Nearest Neighbor, Random Forest Classifier, Gaussian Naïve Bayes, AdaBoost classifier, Bagging Classifier, and Extra-trees Classifier for the first stage, and Nu-SVC as the meta-classifier. The stacking classifier validated using Stratified K-Fold cross-validation achieves an accuracy of 98.62%, precision of 98.99%, recall of 99.53%, F1 score of 99.26%, and an AUC score of 93.17% on the publicly available pediatric pneumonia dataset. We expect this model to greatly help the real-time diagnosis of pediatric pneumonia.

11.
Genes (Basel) ; 13(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36292701

RESUMO

Polysubstance use (PSU) generally involves the simultaneous use of an opioid along with a stimulant. In recent years, this problem has escalated into a nationwide epidemic. Understanding the mechanisms and effects underlying the interaction between these drugs is essential for the development of treatments for those suffering from addiction. Currently, the effect of PSU on synapses-critical points of contact between neurons-remains poorly understood. Using an in vitro model of primary neurons, we examined the combined effects of the psychostimulant methamphetamine (METH) and the prescription opioid oxycodone (oxy) on the synaptic proteome using quantitative mass-spectrometry-based proteomics. A further ClueGO analysis and Ingenuity Pathway Analysis (IPA) indicated the dysregulation of several molecular functions, biological processes, and pathways associated with neural plasticity and structural development. We identified one key synaptic protein, Striatin-1, which plays a vital role in many of these processes and functions, to be downregulated following METH+oxy treatment. This downregulation of Striatin-1 was further validated by Western blot. Overall, the present study indicates several damaging effects of the combined use of METH and oxy on neural function and warrants further detailed investigation into mechanisms contributing to synaptic dysfunction.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Metanfetamina/farmacologia , Oxicodona/farmacologia , Proteoma/genética , Analgésicos Opioides , Estimulantes do Sistema Nervoso Central/farmacologia
12.
Cells ; 11(11)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35681434

RESUMO

The current opioid crisis, which has ravaged all segments of society, continues to pose a rising public health concern. Importantly, dependency on prescription opioids such as oxycodone (oxy) during and after pregnancy can significantly impact the overall brain development of the exposed offspring, especially at the synapse. A significant knowledge gap that remains is identifying distinct synaptic signatures associated with these exposed offspring. Accordingly, the overall goal of this current study was to identify distinct synaptic vesicle (SV) proteins as signatures for offspring exposed to oxy in utero (IUO) and postnatally (PNO). Using a preclinical animal model that imitates oxycodone exposure in utero (IUO) and postnatally (PNO), we used a quantitative mass spectrometry-based proteomics platform to examine changes in the synaptic vesicle proteome on post-natal day 14 (P14) IUO and PNO offspring. We identified MEGF8, associated with carpenter syndrome, to be downregulated in the IUO offspring while LAMTOR4, associated with the regulator complex involved in lysosomal signaling and trafficking, was found to be upregulated in the PNO groups, respectively. Their respective differential expression was further validated by Western blot. In summary, our current study shows exposure to oxy in utero and postnatally can impact the SV proteome in the exposed offspring and the identification of these distinct SV signatures could further pave the way to further elucidate their downstream mechanisms including developing them as potential therapeutic targets.


Assuntos
Oxicodona , Proteômica , Vesículas Sinápticas , Animais , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Oxicodona/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteoma/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
13.
Viruses ; 14(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35336957

RESUMO

Despite the success of combinational antiretroviral therapy (cART), the high pervasiveness of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) poses a significant challenge for society. Methamphetamine (meth) and related amphetamine compounds, which are potent psychostimulants, are among the most commonly used illicit drugs. Intriguingly, HIV-infected individuals who are meth users have a comparatively higher rate of neuropsychological impairment and exhibit a higher viral load in the brain than infected individuals who do not abuse meth. Effectively, all cell types secrete nano-sized lipid membrane vesicles, referred to as extracellular vesicles (EVs) that can function as intercellular communication to modulate the physiology and pathology of the cells. This study shows that meth treatments on chronically HIV-infected promonocytic U1 cells induce the release of EVs that promote cellular clustering and syncytia formation, a phenomenon that facilitates HIV pathogenesis. Our analysis also revealed that meth exposure increased intercellular adhesion molecule-1 (ICAM-1) and HIV-Nef protein expression in both large (10 K) and small (100 K) EVs. Further, when meth EVs are applied to uninfected naïve monocyte-derived macrophages (MDMs), we saw a significant increase in cell clustering and syncytia formation. Furthermore, treatment of MDMs with antibodies against ICAM-1 and its receptor, lymphocyte function-associated antigen 1 (LFA1), substantially blocked syncytia formation, and consequently reduced the number of multinucleated cells. In summary, our findings reveal that meth exacerbates HIV pathogenesis in the brain through release of proadhesive EVs, promoting syncytia formation and thereby aiding in the progression of HIV infection in uninfected cells.


Assuntos
Vesículas Extracelulares , Infecções por HIV , HIV-1 , Metanfetamina , Vesículas Extracelulares/metabolismo , Células Gigantes , HIV-1/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Metanfetamina/farmacologia
14.
J Extracell Vesicles ; 10(14): e12177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34913274

RESUMO

Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.


Assuntos
Vesículas Extracelulares/metabolismo , Metanfetamina/efeitos adversos , MicroRNAs/efeitos adversos , Animais , Doença Crônica , Humanos , Macaca mulatta
15.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203972

RESUMO

Opioid abuse has become a major public health crisis that affects millions of individuals across the globe. This widespread abuse of prescription opioids and dramatic increase in the availability of illicit opioids have created what is known as the opioid epidemic. Pregnant women are a particularly vulnerable group since they are prescribed for opioids such as morphine, buprenorphine, and methadone, all of which have been shown to cross the placenta and potentially impact the developing fetus. Limited information exists regarding the effect of oxycodone (oxy) on synaptic alterations. To fill this knowledge gap, we employed an integrated system approach to identify proteomic signatures and pathways impacted on mixed neuroglial cultures treated with oxy for 24 h. Differentially expressed proteins were mapped onto global canonical pathways using ingenuity pathway analysis (IPA), identifying enriched pathways associated with ephrin signaling, semaphorin signaling, synaptic long-term depression, endocannabinoid signaling, and opioid signaling. Further analysis by ClueGO identified that the dominant category of differentially expressed protein functions was associated with GDP binding. Since opioid receptors are G-protein coupled receptors (GPCRs), these data indicate that oxy exposure perturbs key pathways associated with synaptic function.


Assuntos
Neuroglia/metabolismo , Oxicodona/farmacologia , Proteoma/metabolismo , Análise de Sistemas , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ontologia Genética , Neuroglia/efeitos dos fármacos , Proteômica , Ratos Sprague-Dawley
16.
J Neuroimmune Pharmacol ; 16(3): 519-530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181181

RESUMO

This brief report collects the program and abstracts of the Society on NeuroImmune Pharmacology (SNIP) COVID-19 Virtual Workshop held on April 9, 2021. The workshop consisted of four symposia: Symposium 1: Molecular approaches to COVID-19 pathogenesis and underlying mechanisms; Symposium 2: Therapeutic and vaccine approaches to COVID-19; Symposium 3: Early Career Investigator talks; and Symposium 4: Diversity and Inclusion SNIP Committee (DISC) program: Well-being and reflections. The workshop also featured four special talks on COVID-19 and funding opportunities from the National Institute on Alcohol Abuse and Alcoholism (NIAAA); COVID-19 and funding opportunities from the National Institute on Drug Abuse (NIDA); opportunities from NIH for early career investigator (ECI) fellows; and neurologic and psychiatric complications of SARS-CoV-2 infection. Presenters included NIH officials, SNIP members, and non-member scientists whose abstracts were submitted and accepted for inclusion in the virtual event hosted by the University of Nebraska Medical Center via Zoom webinar. A special theme issue of SNIP's official journal, the Journal of Neuroimmune Pharmacology (JNIP), will collect select papers from the workshop along with other related manuscripts in a special theme issue titled "Neuroimmune Pharmacology of SARS-CoV-2."


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Educação/tendências , Neuroimunomodulação/imunologia , Sociedades Científicas/tendências , Antivirais/administração & dosagem , Antivirais/imunologia , Educação/métodos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Neuroimunomodulação/efeitos dos fármacos
17.
Cells ; 10(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916140

RESUMO

Here, we have attempted to address the timing of EV and virion release from virally infected cells. Uninfected (CEM), HIV-1-infected (J1.1), and human T cell leukemia virus-1 (HTLV-1)-infected (HUT102) cells were synchronized in G0. Viral latency was reversed by increasing gene expression with the addition of serum-rich media and inducers. Supernatants and cell pellets were collected post-induction at different timepoints and assayed for extracellular vesicle (EV) and autophagy markers; and for viral proteins and RNAs. Tetraspanins and autophagy-related proteins were found to be differentially secreted in HIV-1- and HTLV-1-infected cells when compared with uninfected controls. HIV-1 proteins were present at 6 h and their production increased up to 24 h. HTLV-1 proteins peaked at 6 h and plateaued. HIV-1 and HTLV-1 RNA production correlated with viral protein expression. Nanoparticle tracking analysis (NTA) showed increase of EV concentration over time in both uninfected and infected samples. Finally, the HIV-1 supernatant from the 6-h samples was found not to be infectious; however, the virus from the 24-h samples was successfully rescued and infectious. Overall, our data indicate that EV release may occur prior to viral release from infected cells, thereby implicating a potentially significant effect of EVs on uninfected recipient cells prior to subsequent viral infection and spread.


Assuntos
Vesículas Extracelulares/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/patologia , Vírion/metabolismo , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Citocinas/metabolismo , HIV-1/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Modelos Biológicos , Células Mieloides/metabolismo , RNA Viral/metabolismo , Linfócitos T/metabolismo
18.
Ann Pediatr Cardiol ; 14(1): 88-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679069

RESUMO

Sustained ventricular tachycardia (VT) in the early postoperative period following intracardiac repair for tetralogy of Fallot is rare. In stable VT, amiodarone forms the mainstay of management. However, where amiodarone and other antiarrhythmic drugs are contraindicated, suppressive overdrive atrial pacing can be used as a safe and efficient alternative to maintain cardiac output. We present a case of 1-year 5-month-old child who developed VT with low cardiac output syndrome with deranged hepatic function, who was managed efficiently using suppressive atrial pacing to ameliorate the effects of sustained VT.

19.
Encyclopedia (Basel, 2021) ; 1(1): 99-114, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35873062

RESUMO

The inheritance of substance abuse, including opioid abuse, may be influenced by genetic and non-genetic factors related to the environment, such as stress and socioeconomic status. These non-genetic influences on the heritability of a trait can be attributed to epigenetics. Epigenetic inheritance can result from modifications passed down from the mother, father, or both, resulting in either maternal, paternal, or parental epigenetic inheritance, respectively. These epigenetic modifications can be passed to the offspring to result in multigenerational, intergenerational, or transgenerational inheritance. Human and animal models of opioid exposure have shown generational effects that result in molecular, developmental, and behavioral alterations in future generations.

20.
Wiley Interdiscip Rev RNA ; 12(3): e1637, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33336550

RESUMO

Addiction is a chronic and relapsing brain disorder characterized by compulsive seeking despite adverse consequences. There are both heritable and epigenetic mechanisms underlying drug addiction. Emerging evidence suggests that non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs, and circular RNAs regulate synaptic plasticity and related behaviors caused by substances of abuse. These ncRNAs modify gene expression and may contribute to the behavioral phenotypes of addiction. Among the ncRNAs, the most widely researched and impactful are miRNAs. The goal in this systematic review is to provide a detailed account of recent research involving the role of miRNAs in addiction. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.


Assuntos
Comportamento Aditivo/genética , MicroRNAs , RNA Longo não Codificante , Expressão Gênica , Humanos , MicroRNAs/genética , RNA Circular , RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA