Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0297153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236942

RESUMO

Repeated measurements of crop height to observe plant growth dynamics in real field conditions represent a challenging task. Although there are ways to collect data using sensors on UAV systems, proper data processing and analysis are the key to reliable results. As there is need for specialized software solutions for agricultural research and breeding purposes, we present here a fast algorithm ALFA for the processing of UAV LiDAR derived point-clouds to extract the information on crop height at many individual cereal field-plots at multiple time points. Seven scanning flights were performed over 3 blocks of experimental barley field plots between April and June 2021. Resulting point-clouds were processed by the new algorithm ALFA. The software converts point-cloud data into a digital image and extracts the traits of interest-the median crop height at individual field plots. The entire analysis of 144 field plots of dimension 80 x 33 meters measured at 7 time points (approx. 100 million LiDAR points) takes about 3 minutes at a standard PC. The Root Mean Square Deviation of the software-computed crop height from the manual measurement is 5.7 cm. Logistic growth model is fitted to the measured data by means of nonlinear regression. Three different ways of crop-height data visualization are provided by the software to enable further analysis of the variability in growth parameters. We show that the presented software solution is a fast and reliable tool for automatic extraction of plant height from LiDAR images of individual field-plots. We offer this tool freely to the scientific community for non-commercial use.


Assuntos
Hordeum , Melhoramento Vegetal , Software , Algoritmos , Agricultura/métodos
3.
J Agric Food Chem ; 70(23): 7288-7301, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658447

RESUMO

Solubility of growth regulators is essential for their use in agriculture. Four new cytokinin salts─6-benzylaminopurine mesylate (1), 6-(2-hydroxybenzylamino)purine mesylate (2), 6-(3-hydroxybenzylamino)purine mesylate (3), and 6-(3-methoxybenzylamino)purine mesylate (4)─were synthesized, and their crystal structures were determined to clarify structural influence on water solubility. The mesylates were several orders of magnitude more water-soluble than the parent CKs. The new salts significantly reduced chlorophyll degradation and impairment of photosystem II functionality in barley leaf segments undergoing artificial senescence and had pronounced effects on the leaves' endogenous CK pools, maintaining high concentrations of functional metabolites for several days, unlike canonical CKs. A foliar treatment with 1 and 3 increased the harvest yield of spring barley by up to 8% when compared to treatment with the parent CKs while also increasing the number of productive tillers. This effect was attributed to the higher bioavailability of the mesylate salts and the avoidance of dimethyl sulfoxide exposure.


Assuntos
Citocininas , Hordeum , Citocininas/metabolismo , Citocininas/farmacologia , Hordeum/metabolismo , Mesilatos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Sais , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...