Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628681

RESUMO

Crop yield and plant products quality are directly or indirectly affected by climate alterations. Adverse climatic conditions often promote the occurrence of different abiotic stresses, which can reduce or enhance the susceptibility to pests or pathogens. Aflatoxin producing fungi, in particular, whose diffusion and deleterious consequences on cereals commodities have been demonstrated to highly depend on the temperature and humidity conditions that threaten increasingly larger areas. Biological methods using intraspecific competitors to prevent fungal development and/or toxin production at the pre-harvest level are particularly promising, even if their efficacy could be affected by the ecological interaction within the resident microbial population. A previously characterized Aspergillus flavus atoxigenic strain was applied in two maize fields to validate its effectiveness as a biocontrol agent against aflatoxin contamination. At one month post-application, at the harvest stage, its persistence within the A. flavus population colonizing the maize kernels in the treated area was assessed, and its efficacy was compared in vitro with a representation of the isolated atoxigenic population. Results proved that our fungal competitor contained the aflatoxin level on maize grains as successfully as a traditional chemical strategy, even if representing less than 30% of the atoxigenic strains re-isolated, and achieved the best performance (in terms of bio-competitive potential) concerning endogenous atoxigenic isolates.

2.
J Fungi (Basel) ; 7(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34682254

RESUMO

Microbial multi-level interactions are essential to control the success of spreading and survival of most microbes in natural environments. Phytopathogenic mycotoxigenic fungal species, such as Aspergillus flavus, represent an important issue in food safety. Usually, non-toxigenic strains are exploited for biocontrol strategies to mitigate infections by toxigenic strains. To comprehend all the biological variables involved in the aflatoxin biosynthesis, and to possibly evaluate the interplay between A. flavus toxigenic and non-toxigenic strains during intraspecific biocompetition, the "virological" perspective should be considered. For these reasons, investigations on mycoviruses associated to A. flavus populations inhabiting specific agroecosystems are highly desirable. Here, we provide the first accurate characterization of the novel mycovirome identified within an A. flavus wild population colonizing the maize fields of northern Italy: a selection of A. flavus strains was biologically characterized and subjected to RNAseq analysis, revealing new mycoviruses and a peculiar geographic pattern distribution in addition to a 20% rate of infection. More interestingly, a negative correlation between viral infection and aflatoxin production was found. Results significantly expanded the limited existent data about mycoviruses in wild A. flavus, opening new and intriguing hypotheses about the ecological significance of mycoviruses.

3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926042

RESUMO

The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.


Assuntos
Aflatoxinas/química , Aflatoxinas/isolamento & purificação , Aspergillus flavus/química , Aflatoxinas/toxicidade , Antifúngicos/farmacologia , Aspergillus/metabolismo , Aspergillus/patogenicidade , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Produtos Agrícolas/microbiologia , Ecossistema , Contaminação de Alimentos/prevenção & controle , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Humanos , Micotoxinas/toxicidade , Tiossemicarbazonas/química
4.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213072

RESUMO

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Assuntos
Produtos Agrícolas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia
5.
Sci Rep ; 10(1): 17686, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077881

RESUMO

Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.


Assuntos
Acroleína/análogos & derivados , Aspergillus flavus/metabolismo , Benzaldeídos/química , Acroleína/química , Acroleína/metabolismo , Aflatoxinas/biossíntese , Aspergillus flavus/genética , Benzaldeídos/metabolismo , Bases de Dados de Proteínas , Estrutura Molecular , RNA Fúngico/genética , Saccharomyces cerevisiae/metabolismo , Análise Espectral/métodos
6.
Environ Sci Pollut Res Int ; 27(16): 20125-20135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239408

RESUMO

Nanoparticles are widely studied for applications in medical science. In recent years, they have been developed for agronomical purposes to target microbial pest such as bacteria, fungi, and viruses. Nanoparticles are also proposed to limit the use of pesticides, whose abuse is causing environmental impact and human health concerns. In this study, nanoparticles were obtained by using poly-(ε-caprolactone), a polyester chosen for its biocompatibility and biodegradability properties. Poly-(ε-caprolactone) nanoparticles were formulated by using poly(vinyl alcohol) or Pluronic® F127 as non-ionic surfactants, and then loaded with benzophenone or valerophenone thiosemicarbazone, two compounds that inhibit aflatoxin production by Aspergillus flavus. The different types of nanoparticles were compared in terms of size, polydispersity index, morphology, and drug loading capacity. Finally, their effects were investigated on growth, development, and aflatoxin production in the aflatoxigenic species Aspergillus flavus, a ubiquitous contaminant of maize, cereal crops, and derived commodities. Aflatoxin production was inhibited to various extents, but the best inhibitory effect was obtained with respect to sclerotia production that was most effectively suppressed by both benzophenone and valerophenone thiosemicarbazone-loaded nanoparticles. These data support the idea that it is possible to use such nanoparticles as an alternate to pesticides for the control of mycotoxigenic sclerotia-forming fungi.


Assuntos
Aflatoxinas/análise , Tiossemicarbazonas , Aspergillus flavus , Produtos Agrícolas , Zea mays
7.
J Agric Food Chem ; 67(39): 10947-10953, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31498626

RESUMO

Aflatoxins are secondary fungal metabolites that can contaminate feed and food. They are a cause of growing concern worldwide, because they are potent carcinogenic agents. Thiosemicarbazones are molecules that possess interesting antiaflatoxigenic properties, but in order to use them as crop-protective agents, their cytotoxic and genotoxic profiles must first be assessed. In this paper, a group of thiosemicarbazones and a copper complex are reported as compounds able to antagonize aflatoxin biosynthesis, fungal growth, and sclerotia biogenesis in Aspergillus flavus. The two most interesting thiosemicarbazones found were noncytotoxic on several cell lines (CRL1790, Hs27, HFL1, and U937), and therefore, they were submitted to additional analysis of mutagenicity and genotoxicity on bacteria, plants, and human cells. No mutagenic activity was observed in bacteria, whereas genotoxic activity was revealed by the Alkaline Comet Assay on U937 cells and by the test of chromosomal aberrations in Allium cepa.


Assuntos
Aflatoxinas/metabolismo , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Produtos Agrícolas/microbiologia , Dano ao DNA/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Tiossemicarbazonas/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Doenças das Plantas/microbiologia
8.
Molecules ; 24(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426298

RESUMO

Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.


Assuntos
Aflatoxinas/antagonistas & inibidores , Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Aflatoxinas/biossíntese , Antifúngicos/química , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Sítios de Ligação , Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Família Multigênica , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Tiossemicarbazonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...