Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 23(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201534

RESUMO

This work deals with a generalization of the minimum Target Set Selection (TSS) problem, a key algorithmic question in information diffusion research due to its potential commercial value. Firstly proposed by Kempe et al., the TSS problem is based on a linear threshold diffusion model defined on an input graph with node thresholds, quantifying the hardness to influence each node. The goal is to find the smaller set of items that can influence the whole network according to the diffusion model defined. This study generalizes the TSS problem on networks characterized by many-to-many relationships modeled via hypergraphs. Specifically, we introduce a linear threshold diffusion process on such structures, which evolves as follows. Let H=(V,E) be a hypergraph. At the beginning of the process, the nodes in a given set S⊆V are influenced. Then, at each iteration, (i) the influenced hyperedges set is augmented by all edges having a sufficiently large number of influenced nodes; (ii) consequently, the set of influenced nodes is enlarged by all the nodes having a sufficiently large number of already influenced hyperedges. The process ends when no new nodes can be influenced. Exploiting this diffusion model, we define the minimum Target Set Selection problem on hypergraphs (TSSH). Being the problem NP-hard (as it generalizes the TSS problem), we introduce four heuristics and provide an extensive evaluation on real-world networks.

2.
Proc Winter Simul Conf ; 2016: 206-220, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31239603

RESUMO

As high-performance computing resources have become increasingly available, new modes of computational processing and experimentation have become possible. This tutorial presents the Extreme-scale Model Exploration with Swift/T (EMEWS) framework for combining existing capabilities for model exploration approaches (e.g., model calibration, metaheuristics, data assimilation) and simulations (or any "black box" application code) with the Swift/T parallel scripting language to run scientific workflows on a variety of computing resources, from desktop to academic clusters to Top 500 level supercomputers. We will present a number of use-cases, starting with a simple agent-based model parameter sweep, and ending with a complex adaptive parameter space exploration workflow coordinating ensembles of distributed simulations. The use-cases are published on a public repository for interested parties to download and run on their own.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...