Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biofactors ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801155

RESUMO

The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.

2.
Front Nutr ; 10: 1236417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908302

RESUMO

Introduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results: The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion: From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.

3.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678346

RESUMO

BACKGROUND: The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS: Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS: Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS: A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.


Assuntos
Frutose , Proteômica , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Hipotálamo/metabolismo , Inflamação/metabolismo
4.
J Nutr Biochem ; 113: 109247, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496062

RESUMO

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Ratos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Dieta , Tecido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
5.
Mol Neurobiol ; 60(2): 1004-1020, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394711

RESUMO

The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.


Assuntos
Acetilcolinesterase , Fator Neurotrófico Derivado do Encéfalo , Animais , Ratos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lobo Frontal/metabolismo , Frutose/efeitos adversos
6.
Food Funct ; 12(16): 7557-7568, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286786

RESUMO

The link between increased fructose intake and induction of gut and liver dysfunction has been established, while it remains to be understood whether this damage is reversible, particularly in the young population, in which the intake of fructose has reached dramatic levels. To this end, young (30 days old) rats were fed a fructose-rich or control diet for 3 weeks to highlight the early response of the gut and liver to increased fructose intake. After this period, fructose-fed rats were returned to a control diet for 3 weeks and compared to the rats that received the control diet for the entire period to identify whether fructose-induced changes in the gut-liver axis persist or not after switching back to a control diet. Glucose transporter 5 and the tight junction protein occludin were assessed in the ileum and colon. Markers of inflammation and redox homeostasis as well as fructose and uric acid levels were also evaluated in the ileum, colon and liver. From the whole data, it is seen that metabolic derangement elicited by a fructose-rich diet, even after a brief period of intake, is fully reversed in the liver by a period of fructose withdrawal, while the alterations persist in the gut, especially in the ileum. In conclusion, given the increasing consumption of fructose-rich foods in young populations, the present results highlight the risk arising from gut persistent alterations even after the end of a fructose-rich diet. Therefore, dietary recommendations of reducing the intake of this simple sugar is mandatory to avoid not only the related metabolic alterations but also the persistence of these detrimental changes.


Assuntos
Dieta Saudável/métodos , Frutose/metabolismo , Trato Gastrointestinal/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Animais , Dieta/métodos , Modelos Animais de Doenças , Frutose/efeitos adversos , Frutose/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiopatologia , Inflamação/etiologia , Inflamação/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Ratos , Ratos Wistar
7.
Antioxidants (Basel) ; 10(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804637

RESUMO

Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.

8.
Nutrients ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374894

RESUMO

Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.


Assuntos
Encéfalo/fisiologia , Frutose/metabolismo , Roedores/fisiologia , Paladar/fisiologia , Envelhecimento , Animais , Metabolismo dos Carboidratos , Disfunção Cognitiva , Ingestão de Alimentos , Xarope de Milho Rico em Frutose , Inflamação/etiologia , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Memória , Doenças Metabólicas/etiologia , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Obesidade/etiologia , Estresse Oxidativo , Edulcorantes
9.
Biology (Basel) ; 9(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731427

RESUMO

Mastitis is the most common infection of dairy goats impairing milk production and quality, which is usually recognized by mammary gland visual inspection and palpation. Subclinical forms of the disease are also widely represented, which lack the typical signs of the clinical ones but are still associated with reduced production and safety for human consumption of milk, generally presenting a high bacterial count. In order to obtain novel analytical tools for rapid and non-invasive diagnosis of mastitis in goats, we analyzed milk samples from healthy, subclinical and clinical mastitic animals with a MALDI-TOF-MS-based peptidomic platform, generating disease group-specific spectral profiles whose signal intensity and mass values were analyzed by statistics. Peculiar spectral signatures of mastitis with respect to the control were identified, while no significant spectral differences were observed between clinical and subclinical milk samples. Discriminant signals were assigned to specific peptides through nanoLC-ESI-Q-Orbitrap-MS/MS experiments. Some of these molecules were predicted to have an antimicrobial activity based on their strong similarity with homolog bioactive compounds from other mammals. Through the definition of a panel of peptide biomarkers, this study provides a very rapid and low-cost method to routinely detect mastitic milk samples even though no evident clinical signs in the mammary gland are observed.

10.
Mol Nutr Food Res ; 64(16): e2000541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579784

RESUMO

SCOPE: Cholesterol homeostasis is crucial for brain functioning. Unhealthy nutrition can influence cerebral physiology, but the effect of western diets on brain cholesterol homeostasis, particularly at middle age, is unknown. Given the link between brain cholesterol alteration and beta amyloid production, the aim is to evaluate whether a diet rich in fat and fructose affects the protein network implicated in cholesterol synthesis and shuttling between glial cells and neurons, as well as crucial markers of beta amyloid metabolism. METHODS AND RESULTS: Middle aged rats are fed a high fat-high fructose (HFF) or a control diet for 4 weeks. Inflammatory markers and cholesterol levels significantly increase in hippocampus of HFF rats. A higher activation of 3-hydroxy 3-methylglutaryl coenzyme-A reductase, coupled with lower levels of apolipoprotein E, LXR-beta, and lipoproteins receptors is measured in hippocampus from HFF rats. The alteration of critical players of cholesterol homeostasis is associated with increased level of amyloid precursor protein, presenilin 1, and nicastrin, and decreased level of insulin degrading enzyme. CONCLUSIONS: Overall these data show that a western diet is associated with perturbation of cholesterol homeostasis in middle aged rats, mostly in hippocampus. This might trigger molecular events involved in the onset of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Fatores Etários , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiopatologia , Colesterol 24-Hidroxilase/metabolismo , Frutose/efeitos adversos , Homeostase , Hidroximetilglutaril-CoA Redutases/metabolismo , Receptores X do Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
11.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991770

RESUMO

Dietary fats and sugars were identified as risk factors for overweight and neurodegeneration, especially in middle-age, an earlier stage of the aging process. Therefore, our aim was to study the metabolic response of both white adipose tissue and brain in middle aged rats fed a typical Western diet (high in saturated fats and fructose, HFF) and verify whether a similarity exists between the two tissues. Specific cyto/adipokines (tumor necrosis factor alpha (TNF-α), adiponectin), critical obesity-inflammatory markers (haptoglobin, lipocalin), and insulin signaling or survival protein network (insulin receptor substrate 1 (IRS), Akt, Erk) were quantified in epididymal white adipose tissue (e-WAT), hippocampus, and frontal cortex. We found a significant increase of TNF-α in both e-WAT and hippocampus of HFF rats, while the expression of haptoglobin and lipocalin was differently affected in the various tissues. Interestingly, adiponectin amount was found significantly reduced in e-WAT, hippocampus, and frontal cortex of HFF rats. Insulin signaling was impaired by HFF diet in e-WAT but not in brain. The above changes were associated with the decrease in brain derived neurotrophic factor (BDNF) and synaptotagmin I and the increase in post-synaptic protein PSD-95 in HFF rats. Overall, our investigation supports for the first time similarities in the response of adipose tissue and brain to Western diet.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Dieta Ocidental , Metabolismo Energético , Adipócitos/metabolismo , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Masculino , Modelos Biológicos , Especificidade de Órgãos , Ratos , Receptor trkB/metabolismo , Transdução de Sinais
12.
Nutr Neurosci ; 23(4): 309-320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30039750

RESUMO

Objectives: A strong rise of the fructose content in the human diet occurred in the last decade, as corn syrup is widely used as a sweetener for beverages and processed food. Since young people make a widespread consumption of added sugars, we evaluated the effects of a two weeks fructose-rich diet on brain redox homeostasis, autophagy and synaptic plasticity in the cortex of young and adults rats, in order to highlight the early risks to which brain is exposed.Methods and Results: Short-term fructose feeding was associated with an imbalance of redox homeostasis, as lower amount of Nuclear factor (erythroid derived 2)-like 2, lower activity of Glucose 6-phosphate dehydrogenase and Glutathione reductase, together with lower Glutathione/Oxidized Glutathione ratio, were found in fructose-fed young and adult rats. Fructose-rich diet was also associated with the activation of autophagy, as higher levels of Beclin, LC3 II and P62 were detected in cortex of fructose-fed rats. A diet associated decrease of synaptophysin, synapsin I, and synaptotagmin I, was found in fructose-fed young and adult rats. Interestingly, BDNF amount was significantly lower only in fructose-fed adult rats, while the level of its receptor TrkB decreased in both groups of treated rats. A further marker of brain functioning, Acetylcholinesterase activity, was found increased only in fructose-fed young animals.Conclusion: Overall, our findings suggest that young rats may severely suffer from the deleterious influence of fructose on brain health as the adults and provide experimental data suggesting the need of targeted nutritional strategies to reduce its amount in foods.


Assuntos
Autofagia/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Frutose/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Nutrients ; 11(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694213

RESUMO

To assess the effect of 4 weeks of high fat-high fructose feeding on whole body composition, energy balance, specific markers of oxidative stress and inflammation, and insulin sensitivity in the liver of middle-aged rats, rats (1 year) were fed a diet rich in saturated fatty acids and fructose (HFF rats), mimicking the "Western diet", and compared with rats of the same age that were fed a low fat diet (LF rats). HFF rats exhibited a significant increase in the gain of body weight, energy, and lipids compared to LF rats. HFF rats also showed hepatic insulin resistance, together with an increase in plasma triglycerides, cholesterol, and tumor necrosis factor alpha. Hepatic lipids, triglycerides and cholesterol were higher in HFF rats, while a significant decrease in Stearoyl-CoA desaturase activity was found in this tissue. A marked increase in the protein amount of complex I, concomitant to a decrease in its contribution to mitochondrial respiration, was found in HFF rats. Lipid peroxidation and Nitro-Tyrosine content, taken as markers of oxidative stress, as well as NADPH oxidase activity, were significantly higher in HFF rats, while the antioxidant enzyme catalase decreased in these rats. Myeloperoxidase activity and lipocalin content increased, while peroxisome proliferator activated receptor gamma decreased in HFF rats. The present results provide evidence that middle-aged rats show susceptibility to a short-term "Western diet", exhibiting altered redox homeostasis, insulin resistance, and early mitochondrial alterations in the liver. Therefore, this type of dietary habits should be drastically limited to pursue a "healthy aging".


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Composição Corporal , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta com Restrição de Gorduras/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/administração & dosagem , Frutose/administração & dosagem , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
14.
Mol Nutr Food Res ; 63(21): e1900243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398773

RESUMO

Inflammation and oxidative stress play an important role in the pathogenesis of depressive disorders and nuclear erythroid related factor 2 (Nrf2), a regulator of RedOx homeostasis and inflammation, is a promising target for depression prevention/treatment. As fish oil (FO) and conjugated linoleic acid (CLA) are known Nrf2 inducers, their protective ability is comparatively evaluated in a murine model of depression (MRL/MpJ-Faslpr ). Oxidative stress, fatty acids content, and critical factors reflecting brain functioning-namely brain-derived neurotrophic factor (BDNF), synaptic markers, and cholinergic signaling-are preliminarily evaluated in the frontal cortex of 8-week (Young) and in 22-week old animals (Old), which are used as model of depression. These markers are measured in Old mice at the end of a 5-week pretreatment with FO or CLA (728 or 650 mg kg-1 , respectively). Old mice exhibit disrupted Redox homeostasis, compensatory Nrf2 hyperactivation, lower docosaheaxaenoic acid (DHA), and lower BDNF and synaptic function proteins compared to Young mice. FO and CLA treatment relieves almost all the pathophysiological hallmarks at a level comparable to Young mice. Presented data provide the first evidence for the comparable efficacy of FO or CLA supplementation in preventing depression signs in Old MRL/lpr mice, likely through their ability of improving Nrf2-mediated antioxidant defenses.


Assuntos
Encéfalo/efeitos dos fármacos , Depressão/dietoterapia , Óleos de Peixe/farmacologia , Ácidos Linoleicos Conjugados/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Envelhecimento , Animais , Antidepressivos/farmacologia , Autoimunidade/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Depressão/patologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Inflamação/dietoterapia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos MRL lpr , Estresse Oxidativo/efeitos dos fármacos , Estearoil-CoA Dessaturase/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Mol Neurobiol ; 56(11): 7651-7663, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31089964

RESUMO

Middle age is an early stage of the aging process, during which the consumption of diets rich in saturated fats and/or simple sugars might influence brain function, but only few data are available on this issue. We therefore investigated the impact of a diet rich in saturated fat and fructose (HFF) on mitochondrial physiology in hippocampus and frontal cortex of middle-aged rats (1 year old), by including a group of adult rats (90 days) as a "negative control," lacking the putative effect of aging. Middle-aged rats were fed HFF or control diet for 4 weeks. Mitochondrial function was analyzed by high-resolution respirometry and by assessing the amount of respiratory complexes. Markers of oxidative balance, as well as the protein content of uncoupling protein 2 (UCP2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha (PPARα), were also assessed. A decrease in the activity of complex I was detected in both brain areas of middle-aged rats. In hippocampus, mitochondrial respiratory capacity and complex IV content decreased with age and increased with HFF diet. Higher protein oxidative damage, decreased antioxidant defenses, and increased UCP2 and PGC-1α content were found in hippocampus of middle-aged rats. HFF feeding induced a significant reduction in the amount of UCP2, PGC-1α, and PPARα, together with higher protein oxidative damage, in both brain areas. Overall, our results point to middle age as a condition of early brain aging for mitochondrial function, with hippocampus being an area more susceptible to metabolic impairment than frontal cortex.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Mitocôndrias/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Respiração Celular , Transporte de Elétrons , Comportamento Alimentar , Frutose , Masculino , Oxirredução , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Proteína Desacopladora 2/metabolismo
16.
Mol Cell Endocrinol ; 486: 25-33, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30802527

RESUMO

The cholesterol metabolite 24(S)-hydroxycholesterol (24S-OHC) allows cholesterol excretion from the brain and was suggested to be critically involved in physiological as well as neurodegenerative processes. It induces on human neuronal cell cultures a dose dependent toxicity associated with increased reactive oxygen species production. Since glial cells play a key role in assisting neuronal function, here we investigated the effects of increased concentrations of 24S-OHC on a glial cell model (human glioblastoma U-87 MG cells). We determined the content of PGC-1α and TFAM, involved in the biogenesis of mitochondria, both mitochondrial complexes activity and protein amount, lipid and protein oxidative damage, cellular reactive oxygen species (ROS) release and both the activities and amount of the antioxidant enzymes glutathione peroxidase and catalase. Low concentration of 24S-OHC increased cellular content of PGC-1α and TFAM and the activities of mitochondrial complexes I and II, with no marked changes in their protein amount. Interestingly, 24S-OHC at lower concentrations reduced while at higher concentration increased lipid and protein oxidative damage. Conversely, the content of nitro-tyrosine increased only with the highest 24S-OHC concentration. Also, cell H2O2 release was reduced by lower and increased by higher 24S-OHC used concentrations. The cell activity of glutathione peroxidase was reduced by 24S-OHC at higher concentration while that of catalase was reduced by all the assayed concentrations. Further, a dose dependent decrease of both enzymes levels was observed. In conclusion, we demonstrated that 24S-OHC exerts different effects on U-87 MG cells depending on its level. At lower concentrations it stimulates cellular processes critical to maintain redox homeostasis, while at higher dose its effect on the glial cell here used resemble its action on neurons.


Assuntos
Homeostase/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Neuroglia/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Lipídeos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neuroglia/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
17.
J Lipid Res ; 59(1): 48-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167408

RESUMO

Oxidative stress is a key mediator of autoimmune/neurodegenerative disorders. The antioxidant/anti-inflammatory effect of a synthetic conjugated linoleic acid (CLA) mixture in MRL/MpJ-Fas lpr mice (MRL/lpr), an animal model of neuropsychiatric lupus, was previously associated with the improvement of nuclear factor-E2-related factor 2 (Nrf2) defenses in the spleen and liver. However, little is known about the neuroprotective ability of a CLA mixture. This study investigated the age-dependent progression of oxidative stress and the hyperactivation of redox-sensitive compensatory pathways (macroautophagy, Nrf2) in old/diseased MRL/lpr mice brains and examines the effect produced by dietary CLA supplementation. Disrupted redox homeostasis was evidenced in the blood, liver, and brain of 21- to 22-week-old MRL/lpr (Old) mice compared with 8- to 10-week-old MRL/lpr (Young) animals. This alteration was associated with significant hyperactivation of compensatory mechanisms (macroautophagy, Nrf2, and astrocyte activation) in the brains of Old mice. Five-week daily supplementation with CLA (650 mg/kg-1 body weight) of 16-week-old (CLA+Old) mice diminished all the pathological hallmarks at a level comparable to Young mice or healthy controls (BALB/c). Such data demonstrated that MRL/lpr mice can serve as a valuable model for the evaluation of the effectiveness of neuroprotective drugs. Notably, the preventive effect provided by CLA supplementation against age-associated neuronal damage and hyperactivation of compensatory mechanisms suggests that the activation of an adaptive response is at least in part accountable for its neuroprotective ability.


Assuntos
Modelos Animais de Doenças , Ácidos Linoleicos Conjugados/farmacologia , Lúpus Eritematoso Sistêmico/prevenção & controle , Administração Oral , Fatores Etários , Animais , Feminino , Ácidos Linoleicos Conjugados/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Degeneração Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos
18.
Mol Neurobiol ; 55(4): 2869-2883, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28455700

RESUMO

The drastic increase in the consumption of fructose encouraged the research to focus on its effects on brain physio-pathology. Although young and adults differ largely by their metabolic and physiological profiles, most of the previous studies investigated brain disturbances induced by long-term fructose feeding in adults. Therefore, we investigated whether a short-term consumption of fructose (2 weeks) produces early increase in specific markers of inflammation and oxidative stress in the hippocampus of young and adult rats. After the high-fructose diet, plasma lipopolysaccharide and tumour necrosis factor (TNF)-alpha were found significantly increased in parallel with hippocampus inflammation, evidenced by a significant rise in TNF-alpha and glial fibrillar acidic protein concentrations in both the young and adult groups. The fructose-induced inflammatory condition was associated with brain oxidative stress, as increased levels of lipid peroxidation and nitro-tyrosine were detected in the hippocampus. The degree of activation of the protein kinase B, extracellular signal-regulated kinase 1/2, and insulin receptor substrate 1 pathways found in the hippocampus after fructose feeding indicates that the detrimental effects of the fructose-rich diet might largely depend on age. Mitochondrial function in the hippocampus, together with peroxisome proliferator-activated receptor gamma coactivator 1-alpha content, was found significantly decreased in fructose-treated adult rats. In vitro studies with BV-2 microglial cells confirmed that fructose treatment induces TNF-alpha production as well as oxidative stress. In conclusion, these results suggest that unbalanced diet, rich in fructose, may be highly deleterious in young people as in adults and must be strongly discouraged for the prevention of diet-associated neuroinflammation and neurological diseases.


Assuntos
Envelhecimento/patologia , Comportamento Alimentar , Hipocampo/patologia , Inflamação/patologia , Estresse Oxidativo , Animais , Biomarcadores/sangue , Peso Corporal , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Frutose , Inflamação/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese
19.
Sci Total Environ ; 542(Pt A): 653-64, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546761

RESUMO

Dioxins and polychlorinated biphenyls (PCBs) are widely spread and long persistent contaminants. The aim of this study was to evaluate physiological changes associated with the decontamination of animals previously exposed to environmental pollutants. Eight Limousine heifers were removed from a polluted area and fed a standard ration for six months. The extent of contamination was defined by measuring total toxic equivalents (TEQ) values of dioxin like-PCBs (DL-PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs), and NDL-PCBs amount in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months during the decontamination (days 59, 125, and 188). The concentrations of both DL-PCBs + PCDD/Fs and NDL-PCBs at the start of decontamination (day 0) were higher than those legally admitted, and they were strongly decreased at the end of the experimental period. Specific indices of blood redox homeostasis and inflammation were also measured at each time. Serum concentrations of Retinol, Tocopherol and Ascorbate, the total antioxidant capacity (TAC) and the activities of superoxide dismutase and glutathione peroxidase were lower at day 0 than after 59, 125 or 188 days of decontamination. Protein-bound carbonyls (PC), nitro-tyrosine (N-Tyr), and lipid hydroperoxides concentrations were higher at day 0 than during decontamination. In addition, TAC, PC and N-Tyr levels correlated with both DL-PCB and NDL-PCB concentrations only at day 0. Serum concentrations of TNF-alpha and Haptoglobin were higher in samples collected at day 0 than in those obtained during decontamination. As Haptoglobin and TNF-alpha levels correlated with both DL-PCB and NDL-PCB concentrations at day 0 and at day 59 (when these concentrations are still over legal limit), they might represent easily measurable parameters for assessing acute exposure to pollutants. Further both N-Tyr and TNF-alpha concentrations could be used as bio-monitoring markers of the decontamination procedure.


Assuntos
Bovinos/fisiologia , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Bifenilos Policlorados/sangue , Animais , Biomarcadores/sangue , Descontaminação , Feminino , Homeostase , Oxirredução
20.
Neurosci Res ; 105: 19-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26454063

RESUMO

24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/enzimologia , Hidroxicolesteróis/metabolismo , Estresse Oxidativo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Astrócitos/enzimologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Esterificação , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/líquido cefalorraquidiano , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...