Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(2): 727-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26316296

RESUMO

Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling-Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.


Assuntos
Abies/crescimento & desenvolvimento , Mudança Climática , Florestas , Modelos Teóricos , Simulação por Computador , Europa (Continente) , Previsões , Fósseis , Folhas de Planta/crescimento & desenvolvimento , Pólen , Temperatura
2.
Nature ; 516(7530): 234-7, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503236

RESUMO

Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming.


Assuntos
Organismos Aquáticos/metabolismo , Atmosfera/química , Camada de Gelo , Óxido Nitroso/metabolismo , Regiões Antárticas , Aquecimento Global , História Antiga , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise , Óxido Nitroso/história , Isótopos de Oxigênio/análise , Chuva , Temperatura , Fatores de Tempo
3.
Glob Chang Biol ; 20(12): 3700-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156251

RESUMO

The increasing carbon dioxide (CO2 ) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree-ring sites located across Europe are investigated to determine the intrinsic water-use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX-Bern 1.0) that integrates numerous ecosystem and land-atmosphere exchange processes in a theoretical framework. The spatial pattern of tree-ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south-to-north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil-water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation-climate feedbacks are currently still poorly constrained by observational data.


Assuntos
Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Florestas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Ciclo Hidrológico/fisiologia , Isótopos de Carbono/análise , Europa (Continente) , Geografia , Fatores de Tempo
4.
New Phytol ; 196(2): 472-488, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22924469

RESUMO

Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5 Tg N yr(-1) (or 8.3-10.3 Tg N yr(-1) with N deposition). Warming and N deposition contributed 0.85±0.41 and 0.80±0.14 Tg N yr(-1), respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr(-1) K(-1)) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate-carbon cycle feedback caused by soil CO2 release.


Assuntos
Clima , Retroalimentação , Modelos Biológicos , Óxido Nitroso/análise , Agricultura , Dióxido de Carbono/farmacologia , Simulação por Computador , Geografia , Nitrogênio/metabolismo , Chuva , Análise de Regressão , Solo/química , Temperatura
5.
Science ; 328(5986): 1686-9, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20576890

RESUMO

The causes of past changes in the global methane cycle and especially the role of marine methane hydrate (clathrate) destabilization events are a matter of debate. Here we present evidence from the North Greenland Ice Core Project ice core based on the hydrogen isotopic composition of methane [deltaD(CH4)] that clathrates did not cause atmospheric methane concentration to rise at the onset of Dansgaard-Oeschger (DO) events 7 and 8. Box modeling supports boreal wetland emissions as the most likely explanation for the interstadial increase. Moreover, our data show that deltaD(CH4) dropped 500 years before the onset of DO 8, with CH4 concentration rising only slightly. This can be explained by an early climate response of boreal wetlands, which carry the strongly depleted isotopic signature of high-latitude precipitation at that time.

6.
Nature ; 453(7193): 383-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18480822

RESUMO

Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.


Assuntos
Atmosfera/química , Metano/análise , Efeito Estufa , História Antiga , Camada de Gelo , Temperatura , Fatores de Tempo , Clima Tropical , Áreas Alagadas
7.
Nature ; 452(7189): 864-7, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18421351

RESUMO

Past atmospheric methane concentrations show strong fluctuations in parallel to rapid glacial climate changes in the Northern Hemisphere superimposed on a glacial-interglacial doubling of methane concentrations. The processes driving the observed fluctuations remain uncertain but can be constrained using methane isotopic information from ice cores. Here we present an ice core record of carbon isotopic ratios in methane over the entire last glacial-interglacial transition. Our data show that the carbon in atmospheric methane was isotopically much heavier in cold climate periods. With the help of a box model constrained by the present data and previously published results, we are able to estimate the magnitude of past individual methane emission sources and the atmospheric lifetime of methane. We find that methane emissions due to biomass burning were about 45 Tg methane per year, and that these remained roughly constant throughout the glacial termination. The atmospheric lifetime of methane is reduced during cold climate periods. We also show that boreal wetlands are an important source of methane during warm events, but their methane emissions are essentially shut down during cold climate conditions.


Assuntos
Biomassa , Incêndios/estatística & dados numéricos , Camada de Gelo , Metano/análise , Metano/química , Temperatura , Árvores/metabolismo , Atmosfera/química , Carbono/análise , Isótopos de Carbono , Clima Frio , Groenlândia , História Antiga , Hidrogênio/análise , Metano/metabolismo , Método de Monte Carlo , Áreas Alagadas
8.
Proc Natl Acad Sci U S A ; 105(5): 1425-30, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18252830

RESUMO

The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO(2) and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO(2) but from the combination of CO(2), CH(4), and N(2)O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Poluição Ambiental , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Clima , Humanos
9.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1775-92, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17513260

RESUMO

Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.


Assuntos
Gelo , Metano , Óxido Nitroso , Regiões Antárticas , Atmosfera , Clima , Groenlândia , Plantas
10.
Science ; 310(5752): 1317-21, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16311333

RESUMO

The European Project for Ice Coring in Antarctica Dome C ice core enables us to extend existing records of atmospheric methane (CH4) and nitrous oxide (N2O) back to 650,000 years before the present. A combined record of CH4 measured along the Dome C and the Vostok ice cores demonstrates, within the resolution of our measurements, that preindustrial concentrations over Antarctica have not exceeded 773 +/- 15 ppbv (parts per billion by volume) during the past 650,000 years. Before 420,000 years ago, when interglacials were cooler, maximum CH4 concentrations were only about 600 ppbv, similar to lower Holocene values. In contrast, the N2O record shows maximum concentrations of 278 +/- 7 ppbv, slightly higher than early Holocene values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...