Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Med ; 23(7): 3651-3662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36943594

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated inflammatory response to infection. To date, there is no specific treatment established for sepsis. In the extracellular compartment, purines such as adenosine triphosphate (ATP) and adenosine play essential roles in the immune/inflammatory responses during sepsis and septic shock. The balance of extracellular levels among ATP and adenosine is intimately involved in the signals related to immune stimulation/immunosuppression balance. Specialized enzymes, including CD39, CD73, and adenosine deaminase (ADA), are responsible to metabolize ATP to adenosine which will further sensitize the P2 and P1 purinoceptors, respectively. Disruption of the purinergic pathway had been described in the sepsis pathophysiology. Although purinergic signaling has been suggested as a potential target for sepsis treatment, the majority of data available were obtained using pre-clinical approaches. We hypothesized that, as a reflection of deregulation on purinergic signaling, septic patients exhibit differential measurements of serum, neutrophils and monocytes purinergic pathway markers when compared to two types of controls (healthy and ward). It was observed that ATP and ADP serum levels were increased in septic patients, as well as the A2a mRNA expression in neutrophils and monocytes. Both ATPase/ADPase activities were increased during sepsis. Serum ATP and ADP levels, and both ATPase and ADPase activities were associated with the diagnosis of sepsis, representing potential biomarkers candidates. In conclusion, our results advance the translation of purinergic signaling from pre-clinical models into the clinical setting opening opportunities for so much needed new strategies for sepsis and septic shock diagnostics and treatment.


Assuntos
Sepse , Choque Séptico , Humanos , Apirase/metabolismo , Adenosina , Trifosfato de Adenosina/metabolismo , Biomarcadores , Sepse/diagnóstico , Difosfato de Adenosina , Adenosina Trifosfatases
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109742, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349429

RESUMO

This study aimed to develop nanocapsules containing ketoprofen using rose hip oil (Keto-NC) as oil core, and to evaluate their anti-inflammatory activity in acute and chronic ear edema models in mice. Physicochemical characterization, drug release, photostability and cytotoxicity assays were performed for the developed Keto-NC formulations and compared to ketoprofen-loaded nanocapsules using medium chain triglycerides as oil core (Keto-MCT-NC). Anti-inflammatory activity of orally delivered KP (Ketoprofen-free; 10 mg.kg-1) or Keto-NC (2.5; 5; 10 mg.kg-1) was assessed in mouse acute and chronic ear edema induced by croton oil (CO). Edema histological characteristics were determined by H&E stain, and redox parameters were analyzed in blood plasma and erythrocytes. Keto-MCT-NC and Keto-NC did not exhibit differences regarding physicochemical parameters, including size diameters, polydispersity index, pH, Ketoprofen content, and encapsulation efficiency. However, Keto-NC, which contains rose hip oil as lipid core, decreased drug photodegradation under UVC radiation when compared to Keto-MCT-NC. KP or Keto-NC were not cytotoxic to keratinocyte cultures and produced equal edema inhibition in the acute protocol. Conversely, in the chronic protocol, Keto-NC was more effective in reducing edema (~60-70% on 7-9th days of treatment) when compared to KP (~40% on 8-9th days of treatment). This result was confirmed by histological analysis, which indicated reduction of edema and inflammatory infiltrate. A sub-therapeutic dose of Keto-NC (5 mg.kg-1) significantly reduced edema when compared to control. Finally, KP and Keto-NC exhibited similar effects on redox parameters, suggesting that the advantages associated with Ketoprofen nanoencapsulation did not involve oxidative stress pathways. The results showed that Keto-NC was more efficient than KP in reducing chronic inflammation. These data may be important for the development of strategies aiming treatment of chronic inflammatory diseases with fewer adverse effects.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Cetoprofeno/farmacologia , Nanocápsulas/química , Óleos de Plantas/química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Edema/tratamento farmacológico , Humanos , Queratinócitos/efeitos dos fármacos , Cetoprofeno/administração & dosagem , Cetoprofeno/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Nanocápsulas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Rosa/química
3.
Mol Neurobiol ; 56(5): 3260-3279, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30117104

RESUMO

Glioblastoma is the worst and most common primary brain tumor. Here, we demonstrated the role of CD73, an enzyme responsible for adenosine (ADO) production, in glioblastoma progression. ADO increased glioma cell viability via A1 receptor sensitization. CD73 downregulation decreased glioma cell migration and invasion by reducing metalloproteinase-2 and vimentin expression and reduced cell proliferation by 40%, which was related to necrosis and sub-G1 phase blockage of cell cycle. Those effects also involved the stimulation of Akt/NF-kB pathways. Additionally, CD73 knockdown or enzyme inhibition potentiated temozolomide cytotoxic effect on glioma cells by decreasing the IC50 value and sensitizing cells to a non-cytotoxic drug concentration. CD73 inhibition also decreased in vivo rat glioblastoma progression. Delivery of siRNA-CD73 or APCP reduced tumor size by 45 and 40%, respectively, when compared with control. This effect was followed by a parallel 95% reduction of ADO levels in cerebrospinal fluid, indicating the role of extracellular ADO in in vivo glioma growth. Treatment did not induce systemic damage or mortality. Altogether, we conclude that CD73 is an interesting target for glioblastoma treatment and its inhibition may provide new opportunities to improve the treatment of brain tumors. Graphical Abstract ᅟ.


Assuntos
5'-Nucleotidase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação para Baixo/genética , Glioblastoma/genética , Glioblastoma/patologia , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Animais , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular , Progressão da Doença , Técnicas de Silenciamento de Genes , Glioblastoma/sangue , Glioblastoma/tratamento farmacológico , Humanos , Metaloproteinase 2 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Vimentina/metabolismo
4.
Mol Cell Biochem ; 390(1-2): 235-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24573886

RESUMO

Breast cancer is one of the common tumors occurring in woman and despite treatment, the prognostic is poor. Genistein, a soy isoflavone, has been reported to have chemopreventive\chemotherapeutic potential in multiple tumor types. Here, we investigated the genistein antiproliferative effect in MCF-7 breast cancer, underlying the molecular mechanisms involved in this effect. MCF-7 cancer and CCD1059sK fibroblast cells were treated with estradiol (10 nM) or genistein (0.01-100 µM) for 24, 48, and 72 h and the cell proliferation was investigated by MTT; membrane cell permeability was evaluated by LDH and PI incorporation; apoptosis was investigated by externalization of phosphatidylserine by FACS; and presence of autophagy was detected by LC3A/B immunostaining. The expression of apoptotic proteins and antioxidant enzymes was evaluated by qPCR. The results demonstrate that genistein (100 µM) for 72 h of treatment selectively reduced MCF-7 cell proliferation independent of estrogen receptor activation, while no cytotoxicity was observed in fibroblast cells. Further experiments showed that genistein induced phosphatidylserine externalization and LC3A/B immunopositivity in MCF-7 cells, indicating apoptosis and autophagy cell death. Genistein increased in three times proapoptotic BAX/Bcl-2 ratio and promoted a parallel downregulation of 20 times of antiapoptotic survivin. In addition, genistein promoted a decrease of 5.5, 9.3, and 3.6 times of MnSOD, CuZnSOD, and TrxR mRNA expression, respectively, while the GPx expression was increased by 6.5 times. These results suggest that the antitumor effect of genistein involved the modulation of antioxidant enzyme and apoptotic signaling expression, which resulted in apoptosis and progression of autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Genisteína/administração & dosagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Estresse Oxidativo/genética , Proteína X Associada a bcl-2/metabolismo
5.
Neuroscience ; 266: 266-74, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24508813

RESUMO

Multiple sclerosis (MS) is one of the main chronic inflammatory diseases of the CNS that cause functional disability in young adults. It has unknown etiology characterized by the infiltration of lymphocytes and macrophages into the brain. The aim of this study was to evaluate the acetylcholinesterase (AChE) activity in lymphocytes and whole blood, as well as butyrylcholinesterase (BChE) and adenosine deaminase (ADA) activities in serum. We also checked the levels of nucleotides, nucleosides, biomarkers of inflammation such as cytokines (interleukin (IL)-1, IL-6, interferon (IFN)-γ, tumor necrosis factor-alpha (TNF-α) and IL-10) and C-reactive protein (CRP) in serum from 29 patients with the relapsing-remitting form of MS (RRMS) and 29 healthy subjects as the control group. Results showed that AChE in lymphocytes and whole blood as well as BChE, and ADA activities in serum were significantly increased in RRMS patients when compared to the control group (P<0.05). In addition, we observed a decrease in ATP levels and a significant increase in the levels of ADP, AMP, adenosine and inosine in serum from RRMS patients in relation to the healthy subjects (P<0.05). Results also demonstrated an increase in the IFN-γ, TNF-α, IL-1, IL-6 and CRP (P<0.05) and a significant decrease in the IL-10 (P<0.0001) in RRMS patients when compared to control. Our results suggest that alterations in the biomarkers of inflammation and hydrolysis of nucleotides and nucleosides may contribute to the understanding of the neurological dysfunction of RRMS patients.


Assuntos
Adenosina Desaminase/sangue , Biomarcadores/sangue , Colinesterases/sangue , Inflamação/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Inhal Toxicol ; 21(11): 906-12, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19459774

RESUMO

Cigarette smoke is a complex mixture of various toxic substances that are capable of initiating oxidative damage and promoting blood platelet alterations. In this study, we investigated the activities of the ectoenzymes NTPDase (ectonucleoside triphosphate diphosphohydrolase, CD39) and 5'-nucleotidase (CD73) in platelets as well as adenosine deaminase (ADA) in the plasma of rats exposed to aged and diluted sidestream smoke during 4 weeks. The rats were divided into two groups: I (control) and II (exposed to smoke). After the exposure period, blood was collected and the platelets and plasma were separated for enzymatic assay. The results demonstrated that NTPDase (with ATP as substrate) and 5'-nucleotidase (AMP as substrate) activities were significantly higher in group II (p < 0.05) as compared to group I, while no significant difference was observed for NTPDase with ADP as substrate. The ADA activity was significantly reduced in group II (p < 0.05) as compared with group I. Platelet aggregation was significantly increased in group II (p < 0.05) as compared with group I. We suggest that these alterations in the activity of enzymes from the purinergic system are associated with an increase in platelet aggregation. However, our study has demonstrated that the organism tries to compensate for this enhanced aggregation by increasing hydrolysis of AMP and reducing hydrolysis of adenosine, a potent inhibitor of aggregation and an important modulator of vascular tone.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina Trifosfatases/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , 5'-Nucleotidase/sangue , Adenosina/sangue , Animais , Gasometria , Plaquetas/enzimologia , Carboxihemoglobina/metabolismo , Concentração de Íons de Hidrogênio , Pulmão/enzimologia , Pulmão/patologia , Masculino , Agregação Plaquetária/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Ratos , Ratos Wistar , Nicotiana/química
7.
Neurochem Res ; 31(8): 1027-34, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16871442

RESUMO

The ethidium bromide (EB) demyelinating model was associated with interferon beta (IFN-beta) to evaluate acetylcholinesterase (AChE) activity in the striatum (ST), hippocampus (HP), cerebral cortex (CC), cerebellum (CB), hypothalamus (HY), pons (PN) and synaptosomes from the CC. Rats were divided into four groups: I control (saline), II (IFN-beta), III (EB) and IV (EB and IFN-beta). After 7, 15 and 30 days rats (n = 6) were sacrificed, and the brain structures were removed for enzymatic assay. AChE activity was found to vary in all the brain structures in accordance with the day studied (7-15-30 days) (P < 0.05). In the group III, there was an inhibition of the AChE activity in the ST, CB, HY, HP and also in synaptosomes of the CC (P < 0.05). It was observed that IFN-beta per se was capable to significantly inhibit (P < 0.05) AChE activity in the ST, HP, HY and synaptosomes of the CC. Our results suggest that one of the mechanisms of action of IFN-beta is through the inhibition of AChE activity, and EB could be considered an inhibitor of AChE activity by interfering with cholinergic neurotransmission in the different brain regions.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Doenças Desmielinizantes/induzido quimicamente , Etídio/toxicidade , Interferon beta/metabolismo , Animais , Encéfalo/anatomia & histologia , Inibidores da Colinesterase/metabolismo , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Sinaptossomos/enzimologia
8.
Neurochem Res ; 31(4): 455-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16758353

RESUMO

Apyrase and 5'-nucleotidase activities were analyzed in an ethidium bromide (EB) demyelinating model associated with interferon-beta (IFN-beta). The animals were divided in groups: I, control (saline); II, saline and IFN-beta; III, EB and IV, EB and IFN-beta. After 7, 15 and 30 days the animals (n = 5) were sacrificed and the cerebral cortex was removed for synaptosome preparation and enzymatic assays. Apyrase activity using ATP as substrate increased in groups II, III and IV (P < 0.001) after 7 days and in groups III and IV (P < 0.001) after 15 days. Using ADP as substrate, an activation of this enzyme was observed in group III (P < 0.05) after seven and 15 days. The 5'-nucleotidase activity increased in group III (P < 0.05) after 7 days and in groups II, III and IV (P < 0.001) after 15 days. After 30 days treatment, no significant alteration was observed in enzyme activities. Results showed that apyrase and 5'-nucleotidase activities are altered in demyelination events and that IFN-beta was able to regulate the adenine nucleotide hydrolysis.


Assuntos
5'-Nucleotidase/metabolismo , Apirase/metabolismo , Córtex Cerebral/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Etídio/toxicidade , Interferon beta/farmacologia , Sinaptossomos/enzimologia , Nucleotídeos de Adenina/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Inibidores Enzimáticos/toxicidade , Fatores Imunológicos/farmacologia , Masculino , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...