Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 56(1): 99-106, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9063370

RESUMO

A blind test of two remote sensing-based models for predicting adult populations of Anopheles albimanus in villages, an indicator of malaria transmission risk, was conducted in southern Chiapas, Mexico. One model was developed using a discriminant analysis approach, while the other was based on regression analysis. The models were developed in 1992 for an area around Tapachula, Chiapas, using Landsat Thematic Mapper (TM) satellite data and geographic information system functions. Using two remotely sensed landscape elements, the discriminant model was able to successfully distinguish between villages with high and low An. albimanus abundance with an overall accuracy of 90%. To test the predictive capability of the models, multitemporal TM data were used to generate a landscape map of the Huixtla area, northwest of Tapachula, where the models were used to predict risk for 40 villages. The resulting predictions were not disclosed until the end of the test. Independently, An. albimanus abundance data were collected in the 40 randomly selected villages for which the predictions had been made. These data were subsequently used to assess the models' accuracies. The discriminant model accurately predicted 79% of the high-abundance villages and 50% of the low-abundance villages, for an overall accuracy of 70%. The regression model correctly identified seven of the 10 villages with the highest mosquito abundance. This test demonstrated that remote sensing-based models generated for one area can be used successfully in another, comparable area.


Assuntos
Anopheles/crescimento & desenvolvimento , Geografia , Insetos Vetores/crescimento & desenvolvimento , Malária/transmissão , Animais , Análise Discriminante , Humanos , Malária/epidemiologia , México/epidemiologia , Análise Multivariada , Análise de Regressão , Fatores de Risco , Comunicações Via Satélite
2.
Am J Trop Med Hyg ; 51(3): 271-80, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7943544

RESUMO

A landscape approach using remote sensing and geographic information system (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus abundance data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high and low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where 1) the landscape elements critical to vector survival are known and 2) these elements can be detected at remote sensing scales.


Assuntos
Anopheles/crescimento & desenvolvimento , Geografia , Insetos Vetores/crescimento & desenvolvimento , Malária/epidemiologia , Animais , Análise Discriminante , Métodos Epidemiológicos , Humanos , Modelos Lineares , Malária/transmissão , México/epidemiologia , Fotografação , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...