Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21238, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277534

RESUMO

Based on multidisciplinary data, including seismological and geodetic observations, as well as seismic reflection profiles and gravity maps, we analysed the pattern of crustal deformation and active tectonics in the Sicily Channel, a key observation point to unravel the complex interaction between two major plates, Nubia and Eurasia, in the Mediterranean Sea. Our data highlight the presence of an active ~ 220-km-long complex lithospheric fault system (here named the Lampedusa-Sciacca Shear Zone), approximately oriented N-S, crossing the study area with left-lateral strike-slip deformations, active volcanism and high heat flow. We suggest that this shear zone represents the most active tectonic domain in the area, while the NW-SE elongated rifting pattern, considered the first order tectonic feature, appears currently inactive and sealed by undeformed recent (Lower Pleistocene?) deposits. Estimates of seismological and geodetic moment-rates, 6.58 × 1015 Nm/year and 7.24 × 1017 Nm/year, respectively, suggests that seismicity accounts only for ~ 0.9% of crustal deformation, while the anomalous thermal state and the low thickness of the crust would significantly inhibit frictional sliding in favour of creeping and aseismic deformation. We therefore conclude that a significant amount of the estimated crustal deformation-rate occurs aseismically, opening new scenarios for seismic risk assessments in the region.

2.
Sci Data ; 7(1): 373, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149127

RESUMO

We provide a dataset of 3D coordinate time series of 37 continuous GNSS stations installed for stability monitoring purposes on onshore and offshore industrial settlements along a NW-SE-oriented and ~100-km-wide belt encompassing the eastern Italian coast and the Adriatic Sea. The dataset results from the analysis performed by using different geodetic software (Bernese, GAMIT/GLOBK and GIPSY) and consists of six raw position time series solutions, referred to IGb08 and IGS14 reference frames. Time series analyses and comparisons evidence that the different solutions are consistent between them, despite the use of different software, models, strategy processing and frame realizations. We observe that the offshore stations are subject to significant seasonal oscillations probably due to seasonal environmental loads, seasonal temperature-induced platform deformation and hydrostatic pressure variations. Many stations are characterized by non-linear time series, suggesting a complex interplay between regional (long-term tectonic stress) and local sources of deformation (e.g. reservoirs depletion, sediment compaction). Computed raw time series, logs files, phasor diagrams and time series comparison plots are distributed via PANGAEA ( https://www.pangaea.de ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...