Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1119321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968376

RESUMO

Many areas of sugar beet production will face hotter and drier summers as the climate changes. There has been much research on drought tolerance in sugar beet but water use efficiency (WUE) has been less of a focus. An experiment was undertaken to examine how fluctuating soil water deficits effect WUE from the leaf to the crop level and identify if sugar beet acclimates to water deficits to increase WUE in the longer term. Two commercial sugar beet varieties with contrasting upright and prostrate canopies were examined to identify if WUE differs due to contrasting canopy architecture. The sugar beet were grown under four different irrigation regimes (fully irrigated, single drought, double drought and continually water limited) in large 610 L soil boxes in an open ended polytunnel. Measurements of leaf gas exchange, chlorophyll fluorescence and relative water content (RWC) were regularly undertaken and stomatal density, sugar and biomass yields and the associated WUE, SLW and Δ13C were assessed. The results showed that water deficits generally increase intrinsic (WUEi) and dry matter (WUEDM) water use efficiency but reduce yield. Sugar beet recovered fully after severe water deficits, as assessed by leaf gas exchange and chlorophyll fluorescence parameters and, except for reducing canopy size, showed no other acclimation to drought, and therefore no changes in WUE or drought avoidance. Spot measurements of WUEi, showed no differences between the two varieties but the prostrate variety showed lower Δ13C values, and traits associated with more water conservative phenotypes of a lower stomatal density and greater leaf RWC. Leaf chlorophyll content was affected by water deficit but the relationship with WUE was unclear. The difference in Δ13C values between the two varieties suggests traits associated with greater WUEi may be linked to canopy architecture.

2.
Pest Manag Sci ; 78(7): 2767-2778, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35332651

RESUMO

BACKGROUND: Beet cyst nematode, Heterodera schachtii Schmidt is a global threat to sugar beet crops, and is found in every major sugar beet growing region. Annual losses due to this nematode can be severe, being estimated at €90 m in Europe alone in the 1990s. Fortunately tolerant, resistant and partially resistant varieties have since been introduced which help to limit yield loss and are now widely being deployed in infested fields. However, understanding yield performance of these varieties has been difficult, especially when variety testing programmes usually require uninfested fields. RESULTS: For the first time, and in a standardised manner, we can now assess simultaneously the resistance of different varieties to BCN and their actual yield tolerance, by comparing them to varieties grown in uninfested micro-plots alongside those which are infested. This method provides new insights on variety yield performance and nematode reproduction over an entire growing season. In addition, the investigations are also been able to detect significant physiological differences in the development and growth of the tolerant varieties' canopies and leaf chlorophyll levels. CONCLUSIONS: Our findings are of direct benefit to sugar beet growers challenged by BCN. The standardised testing provides new information on predicted variety performance. We found that these tests are justified, as not all tolerant varieties respond in the same manner to nematode infestation. Therefore, these assessments will become a vital part of variety testing for sugar beet growers, allowing for tailored deployment of variety types and more informed decision making on-farm, helping to maximise yields whilst minimising nematode damage. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Beta vulgaris , Cistos , Tylenchoidea , Animais , Controle de Pragas , Açúcares , Tylenchoidea/fisiologia
3.
Planta ; 254(1): 3, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117927

RESUMO

MAIN CONCLUSION: Principal component and meta-QTL analyses identified genetic loci affecting the trade-off of wheat grain number and size, which could provide opportunities to optimize local breeding strategies for further yield improvement. Grain yield of wheat is complex, and its physiological and genetic bases remain largely unknown. Using the Forno/Oberkulmer recombinant inbred lines, this study validated the negative phenotypic relationships between thousand grain weight (TGW) and grain number components. This trade-off might be alleviated at the population level by early anthesis and at the shoot level by higher shoot biomass. Principal component (PC) analysis revealed three useful PCs, of which both PC1 and PC3 were positively associated with grain yield and grains m-2 through increased spikes m-2 (for PC1) or grains per spike (for PC3), while PC2 primarily reflected the trade-off of grain number and TGW. Quantitative trait locus (QTL) mapping detected eight and seven loci for PC1 and PC2, respectively, on chromosomes 1D, 2A, 3A, 3B, 4A, 4B, 5A and 7B, individually explaining 11.7‒29.3% of phenotypic variations. Using the 1203 QTLs published previously, a meta-analysis was performed to reveal 12, 21, 37 and 54 genomic regions (MQTLs) affecting grains m-2, spikes m-2, grains per spike and TGW, respectively. Moreover, 67 MQTLs (96%) for grain number were coincided with the TGW MQTLs, with reverse phenotypic effects, suggesting intensive genetic trade-off between grain number and size. The AGP2 gene, which encodes ADP-glucose pyrophosphorylase determining TGW, was found by haplotype analysis in the Forno/Oberkulmer population to affect grain number oppositely, indicating this trade-off at the gene level. Appropriate combinations of the QTLs/genes for local breeding targets, such as higher grain number or larger grains, therefore, would be critical to achieve future yield gains.


Assuntos
Melhoramento Vegetal , Triticum , Mapeamento Cromossômico , Grão Comestível/genética , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
4.
AoB Plants ; 13(1): plaa067, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33442465

RESUMO

Under conditions of high transpiration and low soil water availability, the demand for water can exceed supply causing a reduction in water potential and a loss of cell turgor (wilting). Regulation of stomatal aperture mediates the loss of water vapour (g s), which in turn is dependent in part on the anatomical characteristics of stomatal density (SD) and stomatal size (SS). Anisohydric sugar beet (Beta vulgaris) is atypical, exhibiting wilting under high soil water availability. Spinach (Spinacia oleracea) belongs to the same family Chenopodiaceae s.s., but demonstrates a more typical wilting response. To investigate the role of stomatal dynamics in such behaviours, sugar beet and spinach leaves were exposed to step-changes in photosynthetic photon flux density (PPFD) from 250 to 2500 µmol m-2 s-1. Using a four log-logistic function, the maximum rate of stomatal opening was estimated. Concurrent measurements of SD and SS were taken for both species. While sugar beet coupled faster opening with smaller, more numerous stomata, spinach showed the converse. After exposure to drought, maximum g s was reduced in sugar beet but still achieved a similar speed of opening. It is concluded that sugar beet stomata respond rapidly to changes in PPFD with a high rate and magnitude of opening under both non-droughted and droughted conditions. Such a response may contribute to wilting, even under high soil water availability, but enables photosynthesis to be better coupled with increasing PPFD.

5.
Pest Manag Sci ; 75(2): 438-443, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29998541

RESUMO

BACKGROUND: The beet cyst nematode (BCN), Heterodera schachtii Schmidt, is a plant parasitic nematode that causes severe yield losses in sugar beet. Resistant brassicas (radish and mustard) have been bred to be planted after harvest of the main crop, for example a cereal, and encourage BCN juvenile hatching. The resistant plants stimulate juvenile hatching but are not suitable hosts. Juveniles are unable to complete their lifecycle and thus populations are lowered. This research aimed to investigate the effectiveness of a range of brassicas in terms of BCN control when grown in infested fields in eastern England. RESULTS: Experiments used four different radish cultivars, which differed in their resistance to BCN, and one resistant mustard variety. Field experiments were sown in early September in 2016 and 2017. Significant reductions in BCN populations were found only following resistant mustard and the radish with the greatest resistance level. CONCLUSIONS: Further research is needed to understand how best to utilize brassicas and whether they are economically viable when alternative management options for BCN are available. Time of planting may be crucial to fully achieve their BCN-reducing potential. © 2018 Society of Chemical Industry.


Assuntos
Antibiose , Proteção de Cultivos/métodos , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Raphanus/fisiologia , Sinapis/fisiologia , Tylenchoidea/fisiologia , Animais , Beta vulgaris , Inglaterra , Controle de Insetos/métodos , Doenças das Plantas/parasitologia
6.
Front Plant Sci ; 9: 1021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108599

RESUMO

Doubled haploid and elite wheat genotypes were ground inoculated in three field experiments and head spray inoculated in two glasshouse experiments, using mixed Fusarium and Microdochium species, to identify crop canopy and ear traits associated with Fusarium head blight (FHB) disease. In all experiments, flag leaf length and tiller number were consistently identified as the most significant canopy traits contributing to progression of FHB caused by Fusarium graminearum, F. culmorum, and F. avenaceum. The influence of ear traits was greater for F. poae that may possess more diverse routes for transmission and spread. Consistently, spikelet density was associated with increased disease severity in the field. F. graminearum, F. culmorum, and F. langsethiae were the main mycotoxin producers and their respective toxins were significantly related to fungal biomass and number of spikelets per ear. Genotypes with lower tiller numbers, shorter flag leaves and less dense ears may be able to avoid FHB disease caused by F. graminearum, F. culmorum, F. avenaceum, or Microdochium species however selection for these canopy and ear architectural traits to enable disease avoidance in wheat is likely to result in a potential trade-off with grain yield and therefore only moderately advantageous in susceptible genotypes.

7.
Planta ; 247(5): 1089-1098, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29353419

RESUMO

MAIN CONCLUSION: Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains m-2, grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of today's free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat 'Forno' × European spelt 'Oberkulmer' recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains m-2, grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains m-2, and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy.


Assuntos
Grão Comestível/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Produção Agrícola , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Pleiotropia Genética/genética , Locos de Características Quantitativas/genética , Triticum/anatomia & histologia
8.
Ann Bot ; 119(7): 1115-1129, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28200109

RESUMO

Background and Aims: Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). Methods: A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). Key Results: There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Conclusions: Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding.


Assuntos
Raízes de Plantas/anatomia & histologia , Locos de Características Quantitativas , Plântula/anatomia & histologia , Triticum/fisiologia , Genótipo , Fenótipo , Triticum/genética
9.
Ann Bot ; 117(1): 51-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26424785

RESUMO

BACKGROUND AND AIMS: Tiller production and survival determine final spike number, and play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to understand the genetic and physiological basis of the tillering process, and its trade-offs with other yield components, by introducing genetic variation in tillering patterns via a mapping population of wheat × spelt (Triticum spelta). METHODS: The dynamics of tillering and red/far-red ratio (R:FR) at the base of a canopy arising from neighbouring plants in a bread wheat (Triticum aestivum 'Forno') × spelt (Triticum spelta 'Oberkulmer') mapping population were measured in the field in two growing seasons. Additional thinning and shading experiments were conducted in the field and glasshouse, respectively. Yield components were analysed for all experiments, followed by identification of quantitative trait loci (QTL) associated with each trait. KEY RESULTS: Large genetic variation in tillering was observed, and more fertile shoots per plant were associated with more total shoots initiated, faster tillering rate, delayed tillering onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were identified, and analysis of allelic effects confirmed the above associations. Low R:FR was associated with early tillering cessation, few total shoots, high infertile shoot number and shoot abortion, and these results concurred with the thinning and shading experiments. These effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers normally contributed to plant yield and grain number without reducing yield and grain set of individual shoots. However, there was a decrease in grain weight, partly because of smaller carpels and fewer stem water-soluble carbohydrates at anthesis caused by pleiotropy or tight gene linkages. CONCLUSIONS: Tillering is under the control of both genetic factors and R:FR. Genetic variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for yield improvement in wheat.


Assuntos
Pão , Mapeamento Cromossômico , Cruzamentos Genéticos , Caules de Planta/anatomia & histologia , Sementes/anatomia & histologia , Triticum/anatomia & histologia , Triticum/fisiologia , Endogamia , Luz , Fenótipo , Folhas de Planta/fisiologia , Caules de Planta/efeitos da radiação , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Triticum/efeitos da radiação
10.
J Exp Bot ; 66(21): 6715-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246614

RESUMO

Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding.


Assuntos
Grão Comestível/genética , Genótipo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Grão Comestível/anatomia & histologia , Grão Comestível/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/metabolismo , Triticum/anatomia & histologia , Triticum/genética
11.
Sci Rep ; 4: 4586, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24699273

RESUMO

Soil tillage practices have a profound influence on the physical properties of soil and the greenhouse gas (GHG) balance. However there have been very few integrated studies on the emission of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and soil biophysical and chemical characteristics under different soil management systems. We recorded a significantly higher net global warming potential under conventional tillage systems (26-31% higher than zero tillage systems). Crucially the 3-D soil pore network, imaged using X-ray Computed Tomography, modified by tillage played a significant role in the flux of CO2 and CH4. In contrast, N2O flux was determined mainly by microbial biomass carbon and soil moisture content. Our work indicates that zero tillage could play a significant role in minimising emissions of GHGs from soils and contribute to efforts to mitigate against climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...