Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(2): 103292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100950

RESUMO

The cluster homolog of immunoglobulin-like receptors (CHIRs), previously known as the "chicken homolog of immunogloublin-like receptors," represents is a large group of transmembrane glycoproteins that direct the immune response. However, the full repertoire of putatively activating, inhibitory, or dual function CHIRA, CHIRB, and CHIRAB on chickens' immune responses is poorly understood. Herein, the study objective was to determine the genes encoding CHIR proteins and predict their function by searching canonical protein structure. A bioinformatics pipeline based on previous work was employed to search for the CHIRs from the newly updated broiler and layer genomes. The categorization into CHIRA, CHIRB, and CHIRAB types was assigned through motif searches, multiple sequence alignment, and phylogeny. In total, 150 protein-encoding genes on Chromosome 31 were identified as CHIRs. Gene members of each functional group (CHIRA, CHIRB, CHIRAB) were classified in accordance with previously recognized proteins. The genes were renamed to "cluster homolog of immunoglobulin-like receptors" (CHIRs) to allow for the naming of orthologous genes in other avian species. Additionally, expression analysis of the classified CHIRs across various reinforces their importance as immune regulators and activation in inflammatory tissues. Furthermore, over 1,000 diverse and rare CHIRs variants associated with differential Marek's disease response (P < 0.05) emphasize the impact of CHIRs on shaping avian immune responses in diverse contexts. The practical applications of these findings encompass advancing immunology, improving poultry health management, optimizing breeding programs for disease resistance, and enhancing overall animal health through a deeper understanding of the roles and functions of CHIRA, CHIRB, and CHIRAB types in avian immune responses.


Assuntos
Galinhas , Doença de Marek , Animais , Galinhas/genética , Genoma , Filogenia , Imunoglobulinas/genética
2.
J Immunol ; 209(7): 1379-1388, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165204

RESUMO

Atopic dermatitis (AD) is a common pruritic inflammatory skin disease with unclear molecular and cellular contributions behind the complex etiology. To unravel these differences between healthy control and AD skin we employed single-cell transcriptomics, utilizing the canine AD model for its resemblance to human clinical and molecular phenotypes. In this study, we show that there are overall increases in keratinocytes and T cells and decreases in fibroblast populations in AD dogs. Within immune cell types, we identified an enriched γδ T cell population in AD, which may contribute to cutaneous inflammation. A prominent IL26-positive fibroblast subpopulation in AD was detected, which may activate neighboring cells in the dermal-epidermal niche. Lastly, by comparing dogs with different disease severities, we found genes that follow disease progression and may serve as potential biomarkers. In this study, we characterized key AD cell types and cellular processes that can be further leveraged in diagnosis and treatment.


Assuntos
Dermatite Atópica , Animais , Progressão da Doença , Cães , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Pele/metabolismo
3.
Front Immunol ; 12: 647019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995365

RESUMO

Tuberculosis can occur during any stage of Human Immunodeficiency virus 1 (HIV) -infection including times when CD4+ T cell numbers have reconstituted and viral replication suppressed. We have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic myeloid-derived suppressor cells (MDSC) persist in HIV-infected individuals on combined anti-retroviral therapy (cART) and with virologic suppression. The response of MDSC to Mycobacterium tuberculosis (Mtb) is not known. In this study, we compared the anti-mycobacterial activity of MDSC isolated from HIV -infected individuals on cART with virologic suppression (HIV MDSC) and HIV-uninfected healthy controls (HIV (-) MDSC). Compared to HIV (-) MDSC, HIV MDSC produced significantly less quantities of anti-mycobacterial cytokines IL-12p70 and TNFα, and reactive oxygen species when cultured with infectious Mtb or Mtb antigens. Furthermore, HIV MDSC showed changes in the Toll-like receptor and IL-27 signaling, including reduced expression of MyD88 and higher levels of IL-27. Neutralizing IL-27 and overexpression of MyD88 synergistically controlled intracellular replication of Mtb in HIV MDSC. These results demonstrate that MDSC in fully suppressed HIV-infected individuals are permissive to Mtb and exhibit downregulated anti-mycobacterial innate immune activity through mechanisms involving IL-27 and TLR signaling. Our findings suggest MDSC as novel mediators of tuberculosis in HIV-Mtb co-infected individuals with virologic suppression.


Assuntos
Infecções por HIV/imunologia , Imunidade Inata/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Células Supressoras Mieloides/imunologia , Antivirais/uso terapêutico , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Citocinas/imunologia , Citocinas/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Interleucina-27/imunologia , Interleucina-27/metabolismo , Monócitos/microbiologia , Monócitos/virologia , Mycobacterium tuberculosis/fisiologia , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Células Supressoras Mieloides/microbiologia , Células Supressoras Mieloides/virologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Tuberculose/imunologia , Tuberculose/microbiologia
4.
Gen Comp Endocrinol ; 227: 58-63, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26414126

RESUMO

Since its first identification in quail 15 years ago, gonadotropin inhibitory hormone (GnIH) has become a central regulator of reproduction in avian species. In this review, we have revisited our original model published in 2009 to incorporate recent experimental evidence suggesting that GnIH acts as a molecular switch during the integration of multiple external and internal cues that allow sexual maturation to proceed in chickens. Furthermore, we discuss the regulation of a dual inhibitory/stimulatory control of the hypothalamo-pituitary-gonadal axis involving the interaction between GnIH and gonadotropin releasing hormone (GnRH). Finally, beyond seasonality, we also propose that GnIH along with this dual control may be responsible for the circadian control of ovulation in chickens, allowing eggs to be laid in a synchronized manner.


Assuntos
Galinhas/fisiologia , Hormônios Hipotalâmicos/metabolismo , Ovulação/metabolismo , Reprodução/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Sistemas Neurossecretores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...