Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Reprod Sci ; 98(1-2): 72-96, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17110061

RESUMO

The importance of oocyte quality cannot be overstated, because it impacts all subsequent events during development of the embryo, the fetus and even the resulting offspring. Oocyte metabolism plays a critical role in supporting developmental competence via multiple mechanisms. It is beginning to be understood that metabolic pathways not only affect cytoplasmic maturation but may control nuclear maturation as well. A complete understanding of the precise roles that metabolism plays in determining oocyte quality is crucial for developing efficient in vitro maturation systems to support acquisition of oocyte competence. To date, this pursuit has not been entirely successful. Work in our laboratory on porcine oocyte metabolism has elucidated some of the intricate control mechanisms at work within the oocyte, not only for energy production, but also encompassing progression of nuclear maturation, mitochondrial activity and distribution, and oxidative and ionic stresses. We hypothesize that by utilizing oocyte metabolic data, we can develop more appropriate in vitro maturation systems that result in increased oocyte and embryo developmental competence.


Assuntos
Oócitos/fisiologia , Animais , Bovinos , Técnicas de Cultura de Células , Meios de Cultura , Metabolismo Energético , Meiose , Camundongos , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Especificidade da Espécie , Suínos
2.
Reprod Fertil Dev ; 15(4): 249-54, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12927069

RESUMO

The development of efficient systems for in vitro production of porcine embryos has been hampered by a high incidence of polyspermic fertilization. A recently developed single-medium system for porcine in vitro maturation (IVM), IVF and in vitro embryo culture (IVC) (Purdue Porcine Medium; PPM) was modified with elevated bicarbonate (44 mM) and reduced calcium concentrations (1.7 mM) for IVF (PPMfert.2). Oocyte penetration was evaluated after maturation in PPMmat (0.5 mg mL(-1) hyaluronan, 0.6 mM cysteine, 10 ng mL(-1) epidermal growth factor (EGF), 0.1 U mL(-1) porcine LH and FSH, and 1 x Minimal Essential Medium (MEM) vitamins) and fertilization (5 h with 5 x 10(5) sperm mL(-1)) in either PPMfert.2 or mTBM (20 mM Tris, 0.0 mM bicarbonate, 7.5 mM calcium). Embryonic development (cleavage and blastocyst stages) was assessed after culture in PPM1 and PPM2. Although penetration was lower in PPMfert.2 (69.9%) compared with mTBM (83.9%), 48.8% of penetrated oocytes were fertilized normally in PPMfert.2 compared with only 27.8% normal fertilization in mTBM. More oocytes cleaved in PPMfert.2 (77.9% v. 53.7%), but development to the blastocyst stage was not different between treatments (14.1% v. 14.3%). Further work is needed to improve embryonic development, but reduced polyspermic penetration is an important step in the optimization of the PPM system for in vitro porcine embryo production.


Assuntos
Bicarbonatos/metabolismo , Cálcio/metabolismo , Fertilização in vitro/métodos , Fertilização , Oócitos/crescimento & desenvolvimento , Interações Espermatozoide-Óvulo , Suínos/embriologia , Animais , Meios de Cultura/metabolismo , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA