Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36366299

RESUMO

In this paper, we deal with the problem of estimating the reproduction number Rt during an epidemic, as it represents one of the most used indicators to study and control this phenomenon. In particular, we focus on two issues. First, to estimate Rt, we consider the use of positive test case data as an alternative to the first symptoms data, which are typically used. We both theoretically and empirically study the relationship between the two approaches. Second, we modify a method for estimating Rt during an epidemic that is widely used by public institutions in several countries worldwide. Our procedure is not affected by the problems deriving from the hypothesis of Rt local constancy, which is assumed in the standard approach. We illustrate the results obtained by applying the proposed methodologies to real and simulated SARS-CoV-2 datasets. In both cases, we also apply some specific methods to reduce systematic and random errors affecting the data. Our results show that the Rt during an epidemic can be estimated by using the positive test data, and that our estimator outperforms the standard estimator that makes use of the first symptoms data. It is hoped that the techniques proposed here could help in the study and control of epidemics, particularly the current SARS-CoV-2 pandemic.

2.
Viruses ; 13(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799900

RESUMO

(1) Background: A better understanding of COVID-19 dynamics in terms of interactions among individuals would be of paramount importance to increase the effectiveness of containment measures. Despite this, the research lacks spatiotemporal statistical and mathematical analysis based on large datasets. We describe a novel methodology to extract useful spatiotemporal information from COVID-19 pandemic data. (2) Methods: We perform specific analyses based on mathematical and statistical tools, like mathematical morphology, hierarchical clustering, parametric data modeling and non-parametric statistics. These analyses are here applied to the large dataset consisting of about 19,000 COVID-19 patients in the Veneto region (Italy) during the entire Italian national lockdown. (3) Results: We estimate the COVID-19 cumulative incidence spatial distribution, significantly reducing image noise. We identify four clusters of connected provinces based on the temporal evolution of the incidence. Surprisingly, while one cluster consists of three neighboring provinces, another one contains two provinces more than 210 km apart by highway. The survival function of the local spatial incidence values is modeled here by a tapered Pareto model, also used in other applied fields like seismology and economy in connection to networks. Model's parameters could be relevant to describe quantitatively the epidemic. (4) Conclusion: The proposed methodology can be applied to a general situation, potentially helping to adopt strategic decisions such as the restriction of mobility and gatherings.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Análise por Conglomerados , Humanos , Incidência , Modelos Teóricos , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Análise Espaço-Temporal
3.
Vaccines (Basel) ; 8(4)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334007

RESUMO

SARS-CoV-2 is highly contagious, rapidly turned into a pandemic, and is causing a relevant number of critical to severe life-threatening COVID-19 patients. However, robust statistical studies of a large cohort of patients, potentially useful to implement a vaccination campaign, are rare. We analyzed public data of about 19,000 patients for the period 28 February to 15 May 2020 by several mathematical methods. Precisely, we describe the COVID-19 evolution of a number of variables that include age, gender, patient's care location, and comorbidities. It prompts consideration of special preventive and therapeutic measures for subjects more prone to developing life-threatening conditions while affording quantitative parameters for predicting the effects of an outburst of the pandemic on public health structures and facilities adopted in response. We propose a mathematical way to use these results as a powerful tool to face the pandemic and implement a mass vaccination campaign. This is done by means of priority criteria based on the influence of the considered variables on the probability of both death and infection.

4.
Phys Rev E ; 93: 042134, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27176281

RESUMO

We propose a version of the pure temporal epidemic type aftershock sequences (ETAS) model: the ETAS model with correlated magnitudes. As for the standard case, we assume the Gutenberg-Richter law to be the probability density for the magnitudes of the background events. Instead, the magnitude of the triggered shocks is assumed to be probabilistically dependent on that of the relative mother events. This probabilistic dependence is motivated by some recent works in the literature and by the results of a statistical analysis made on some seismic catalogs [Spassiani and Sebastiani, J. Geophys. Res. 121, 903 (2016)10.1002/2015JB012398]. On the basis of the experimental evidences obtained in the latter paper for the real catalogs, we theoretically derive the probability density function for the magnitudes of the triggered shocks proposed in Spassiani and Sebastiani and there used for the analysis of two simulated catalogs. To this aim, we impose a fundamental condition: averaging over all the magnitudes of the mother events, we must obtain again the Gutenberg-Richter law. This ensures the validity of this law at any event's generation when ignoring past seismicity. The ETAS model with correlated magnitudes is then theoretically analyzed here. In particular, we use the tool of the probability generating function and the Palm theory, in order to derive an approximation of the probability of zero events in a small time interval and to interpret the results in terms of the interevent time between consecutive shocks, the latter being a very useful random variable in the assessment of seismic hazard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...