Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(3-1): 033204, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075946

RESUMO

The resources needed for particle-in-cell simulations of laser wakefield acceleration can be greatly reduced in many cases of interest using an envelope model. However, the inclusion of tunneling ionization in this time-averaged treatment of laser-plasma acceleration is not straightforward, since the statistical features of the electron beams obtained through ionization should ideally be reproduced without resolving the high-frequency laser oscillations. In this context, an extension of an already known envelope ionization procedure is proposed, valid also for laser pulses with higher intensities, which consists in adding the initial longitudinal drift to the newly created electrons within the laser pulse ionizing the medium. The accuracy of the proposed procedure is shown with both linear and circular polarization in a simple benchmark where a nitrogen slab is ionized by a laser pulse and in a more complex benchmark of laser plasma acceleration with ionization injection in the nonlinear regime. With this addition to the envelope ionization algorithm, the main phase space properties of the bunches injected in a plasma wakefield with ionization by a laser (charge, average energy, energy spread, rms sizes, and normalized emittance) can be estimated with accuracy comparable to a nonenvelope simulation with significantly reduced resources, even in cylindrical geometry. Through this extended algorithm, preliminary studies of ionization injection in laser wakefield acceleration can be easily carried out even on a laptop.

2.
Phys Rev Lett ; 107(21): 215004, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181891

RESUMO

The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

3.
Phys Rev Lett ; 102(16): 164801, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19518716

RESUMO

To take full advantage of a laser-plasma accelerator, stability and control of the electron beam parameters have to be achieved. The external injection scheme with two colliding laser pulses is a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. In this Letter, it is shown that by tuning the optical injection parameters, one is able to control the phase-space volume of the injected particles, and thus the charge and the energy spread of the beam. With this method, the production of a laser accelerated electron beam of 10 pC at the 200 MeV level with a 1% relative energy spread at full width half maximum (3.1% rms) is demonstrated. This unique tunability extends the capability of laser-plasma accelerators and their applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...