Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 10: 128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523076

RESUMO

BACKGROUND: Hitherto, the main goal of metaproteomic analyses has been to characterize the functional role of particular microorganisms in the microbial ecology of various microbial communities. Recently, it has been suggested that metaproteomics could be used for bioprospecting microbial communities to query for the most active enzymes to improve the selection process of industrially relevant enzymes. In the present study, to reduce the complexity of metaproteomic samples for targeted bioprospecting of novel enzymes, a microbial community capable of producing cellulases was maintained on a chemically defined medium in an enzyme suppressed metabolic steady state. From this state, it was possible to specifically and distinctively induce the desired cellulolytic activity. The extracellular fraction of the protein complement of the induced sample could thereby be purified and compared to a non-induced sample of the same community by differential gel electrophoresis to discriminate between constitutively expressed proteins and proteins upregulated in response to the inducing substance. RESULTS: Using the applied approach, downstream analysis by mass spectrometry could be limited to only proteins recognized as upregulated in the cellulase-induced sample. Of 39 selected proteins, the majority were found to be linked to the need to degrade, take up, and metabolize cellulose. In addition, 28 (72%) of the proteins were non-cytosolic and 17 (44%) were annotated as carbohydrate-active enzymes. The results demonstrated both the applicability of the proposed approach for identifying extracellular proteins and guiding the selection of proteins toward those specifically upregulated and targeted by the enzyme inducing substance. Further, because identification of interesting proteins was based on the regulation of enzyme expression in response to a need to hydrolyze and utilize a specific substance, other unexpected enzyme activities were able to be identified. CONCLUSIONS: The described approach created the conditions necessary to be able to select relevant extracellular enzymes that were extracted from the enzyme-induced microbial community. However, for the purpose of bioprospecting for enzymes to clone, produce, and characterize for practical applications, it was concluded that identification against public databases was not sufficient to identify the correct gene or protein sequence for cloning of the identified novel enzymes.

2.
Biotechnol Biofuels ; 10: 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523077

RESUMO

BACKGROUND: Enzymatic treatment of lignocellulosic material for increased biogas production has so far focused on pretreatment methods. However, often combinations of enzymes and different physicochemical treatments are necessary to achieve a desired effect. This need for additional energy and chemicals compromises the rationale of using enzymes for low energy treatment to promote biogas production. Therefore, simpler and less energy intensive in situ anaerobic digester treatment with enzymes is desirable. However, investigations in which exogenous enzymes are added to treat the material in situ have shown mixed success, possibly because the enzymes used originated from organisms not evolutionarily adapted to the environment of anaerobic digesters. In this study, to examine the effect of enzymes endogenous to methanogenic microbial communities, cellulolytic enzymes were instead overproduced and collected from a dedicated methanogenic microbial community. By this approach, a solution with very high endogenous microbial cellulolytic activity was produced and tested for the effect on biogas production from lignocellulose by in situ anaerobic digester treatment. RESULTS: Addition of enzymes, endogenous to the environment of a mixed methanogenic microbial community, to the anaerobic digestion of ensiled forage ley resulted in significantly increased rate and yield of biomethane production. The enzyme solution had an instant effect on more readily available cellulosic material. More importantly, the induced enzyme solution also affected the biogas production rate from less accessible cellulosic material in a second slower phase of lignocellulose digestion. Notably, this effect was maintained throughout the experiment to completely digested lignocellulosic substrate. CONCLUSIONS: The induced enzyme solution collected from a microbial methanogenic community contained enzymes that were apparently active and stable in the environment of anaerobic digestion. The enzymatic activity had a profound effect on the biogas production rate and yield, comparable with the results of many pretreatment methods. Thus, application of such enzymes could enable efficient low energy in situ anaerobic digester treatment for increased biomethane production from lignocellulosic material.

3.
Anal Biochem ; 516: 23-36, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742212

RESUMO

Enzyme discovery in individual strains of microorganisms is compromised by the limitations of pure culturing. In principle, metaproteomics allows for fractionation and study of different parts of the protein complement but has hitherto mainly been used to identify intracellular proteins. However, the extracellular environment is also expected to comprise a wealth of information regarding important proteins. An absolute requirement for metaproteomic studies of protein expression, and irrespective of downstream methods for analysis, is that sample preparation methods provide clean, concentrated and representative samples of the protein complement. A battery of methods for concentration, extraction, precipitation and resolubilization of proteins in the extracellular environment of a constructed microbial community was assessed by means of 2D gel electrophoresis and image analysis to elucidate whether it is possible to make the extracellular protein complement available for metaproteomic analysis. Most methods failed to provide pure samples and therefore negatively influenced protein gel migration and gel background clarity. However, one direct precipitation method (TCA-DOC/acetone) and one extraction/precipitation method (phenol/methanol) provided complementary high quality 2D gels that allowed for high spot detection ability and thereby also spot detection of less abundant extracellular proteins.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteômica/métodos , Manejo de Espécimes/métodos , Eletroforese em Gel Bidimensional/métodos
4.
Appl Microbiol Biotechnol ; 100(18): 7989-8002, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27115757

RESUMO

Novel enzymes that are stable in diverse conditions are intensively sought because they offer major potential advantages in industrial biotechnology, and microorganisms in extreme environments are key sources of such enzymes. However, most potentially valuable enzymes are currently inaccessible due to the pure culturing problem of microorganisms. Novel metagenomic and metaproteomic techniques that circumvent the need for pure cultures have theoretically provided possibilities to identify all genes and all proteins in microbial communities, but these techniques have not been widely used to directly identify specific enzymes because they generate vast amounts of extraneous data.In a first step towards developing a metaproteomic approach to pinpoint targeted extracellular hydrolytic enzymes of choice in microbial communities, we have generated and analyzed the necessary conditions for such an approach by the use of a methanogenic microbial community maintained on a chemically defined medium. The results show that a metabolic steady state of the microbial community could be reached, at which the expression of the targeted hydrolytic enzymes were suppressed, and that upon enzyme induction a distinct increase in the targeted enzyme expression was obtained. Furthermore, no cross talk in expression was detected between the two focal types of enzyme activities under their respective inductive conditions. Thus, the described approach should be useful to generate ideal samples, collected before and after selective induction, in controlled microbial communities to clearly discriminate between constituently expressed proteins and extracellular hydrolytic enzymes that are specifically induced, thereby reducing the analysis to only those proteins that are distinctively up-regulated.


Assuntos
Hidrolases/metabolismo , Metano/metabolismo , Consórcios Microbianos , Meios de Cultura/química , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA