Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(46): 13595-13601, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752118

RESUMO

Separation operations are critical across a wide variety of manufacturing industries and account for about one-quarter of all in-plant energy consumption in the United States. Conventional liquid-liquid separation operations require either thermal or chemical treatment, both of which have a large environmental impact and carbon footprint. Consequently, there is a great need to develop sustainable, clean methodologies for separation of miscible liquid mixtures. The greatest opportunities to achieve this lie in replacing high-energy separation operations (e.g., distillation) with low-energy alternatives such as liquid-liquid extraction. One of the primary design challenges in liquid-liquid extraction is to maximize the interfacial area between two immiscible (e.g., polar and nonpolar) liquids for efficient mass transfer. However, this often involves energy-intensive methods including ultrasonication, pumping the feed and the extractant through packed columns with high tortuosity, or using a supercritical fluid as an extractant. Emulsifying the feed and the extractant, especially with a surfactant, offers a large interfacial area, but subsequent separation of emulsions can be energy-intensive and expensive. Thus, emulsions are typically avoided in conventional extraction operations. Herein, we discuss a novel, easily scalable, platform separation methodology termed CLEANS (continuous liquid-liquid extraction and in-situ membrane separation). CLEANS integrates emulsion-enhanced extraction with continuous, gravity-driven, membrane-based separation of emulsions into a single unit operation. Our results demonstrate that the addition of a surfactant and emulsification significantly enhance extraction (by >250% in certain cases), even for systems where the best extractants for miscible liquid mixtures are known. Utilizing the CLEANS methodology, we demonstrate continuous separation of a wide range of miscible liquid mixtures, including soluble organic molecules from oils, alcohols from esters, and even azeotropes.

2.
J Phys Chem A ; 122(6): 1612-1622, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29303585

RESUMO

Sulfate aerosols' cooling effect on the global climate has spurred research to understand their mechanisms of formation. Both theoretical and laboratory studies have shown that the formation of sulfate aerosols is enhanced by the presence of a base like ammonia. Stronger alkylamine bases such as monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) further increase aerosol formation rates by many orders of magnitude relative to that of ammonia. However, recent lab measurements have found that the presence of ammonia and alkylamines together increases nucleation rates by another 1-2 orders of magnitude relative to the stronger alkylamines alone. This work explores that observation by studying the thermodynamic stability of clusters containing up to two sulfuric acids and two bases of the same or different type. Initial configurational sampling is performed using genetic algorithm (GA) interfaced to semiempirical methods to find a large number of low-energy configurations. These structures are then subject to quantum mechanical calculations using PW91, M06-2X, and ωB97X-D functionals and MP2 with large basis sets. The thermodynamics of formation is reviewed to determine if it rationalizes why mixed base systems yield higher rates of aerosol formation than single base ones. The gas phase basicity of the bases in a cluster is the main determinant of binding strength in smaller clusters such as those in the current study while aqueous phase basicity is more important for larger particles. Besides thermodynamic considerations, the differences in aerosol formation mechanisms as a function of size and between the gas and particle phases are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...