Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30943116

RESUMO

There are an ample number of commercial testing kits available for mycotoxin analysis on the market today, including enzyme-linked immunosorbent assays, membrane-based immunoassays, fluorescence polarisation immunoassays and fluorometric assays. It can be observed from the literature that not only are developments and improvements ongoing for these assays but there are also novel assays being developed using biosensor technology. This review focuses on both the currently available methods and recent innovative methods for mycotoxin testing. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid on-site analysis, indicating the possible detection methods that will shape the future market.


Assuntos
Contaminação de Alimentos/análise , Imunoensaio/métodos , Micotoxinas/análise
2.
Luminescence ; 19(5): 287-95, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15449348

RESUMO

Many genomic assays rely on a distance-dependent interaction between luminescent labels, such as luminescence quenching or resonance energy transfer. We studied the interaction between electrochemically excited Ru(bpy)(3) (2+) and Cy5 in a hybridization assay on a chip. The 3' end of an oligonucleotide was labelled with Ru(bpy)(3) (2+) and the 5' end of a complementary strand with Cy5. Upon the hybridization, the electrochemiluminescence (ECL) of Ru(bpy)(3) (2+) was efficiently quenched by Cy5 with a sensitivity down to 30 nmol/L of the Cy5-labelled complementary strand. The quenching efficiency is calculated to be 78%. A similar phenomenon was observed in a comparative study using laser-excitation of Ru(bpy)(3) (2+). The hybridization with the non-labelled complementary or labelled non-complementary strand did not change the intensity of the ECL signal. Resonance energy transfer, electron transfer and static quenching mechanisms are discussed. Our results suggest that static quenching and/or electron transfer are the most likely quenching mechanisms.


Assuntos
Medições Luminescentes , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligonucleotídeos/química , Carbocianinas/química , Eletroquímica , Genoma , Compostos Organometálicos/química , Sensibilidade e Especificidade
3.
Electrophoresis ; 24(21): 3674-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14613192

RESUMO

This paper characterizes the basic electrokinetic phenomena occurring within native poly(dimethylsiloxane) (PDMS) microchannels. Using simple buffers and current measurements, current density and electroosmosis data were determined in trapezoidal, reversibly sealed PDMS/PDMS and hybrid PDMS/glass channels with a cross-sectional area of 1035.5 microm(2) and about 6 cm length. This data was then compared to that obtained in an air-thermostated 50 microm inner diameter (1963.5 microm(2) cross-sectional area) fused-silica (FS) capillary of 70 cm length. Having a pH 7.8 buffer with an ionic strength (I) of 90 mM, Ohms's law was observed in the microchannels with electric field strengths of up to about 420 V/cm, which is about twice as high as for the FS capillary. The electroosmotic mobility (micro(EO)) in PDMS and FS is shown to exhibit the same general dependences on I and pH. For all configurations tested, the experimentally determined micro(EO) values were found to correlate well with the relationship micro(EO) = a + b log(I), where a and b are coefficients that are determined via nonlinear regression analysis. Electroosmotic fluid pumping in native PDMS also follows a pH dependence that can be estimated with a model based upon the ionization of silanol. Compared to FS, however, the magnitude of the electroosmotic flow in native PDMS is 50-70% smaller over the entire pH range and is difficult to maintain at acidic pH values. Thus, the origin of the negative charge at the inner wall of PDMS, glass, and FS appears to be similar but the density is lower for PDMS than for glass and FS.


Assuntos
Dimetilpolisiloxanos , Silicones , Eletroquímica/métodos , Miniaturização , Osmose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...