Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 128(6): 1019-1028, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35164969

RESUMO

BACKGROUND: General anaesthetics have marked effects on synaptic transmission, but their neuronal and circuit-level effects remain unclear. The volatile anaesthetic isoflurane differentially inhibits synaptic vesicle exocytosis in specific neuronal subtypes, but whether other common anaesthetics also have neurone-subtype-specific actions is unknown. METHODS: We used the genetically encoded fluorescent Ca2+ sensor GCaMP6f to compare the pharmacological effects of isoflurane, sevoflurane, propofol, and ketamine on presynaptic excitability in hippocampal glutamatergic neurones and in hippocampal parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV+, SST+, and VIP+, respectively) GABAergic interneurones. RESULTS: Isoflurane and sevoflurane depressed activity-driven presynaptic Ca2+ transients in a neurone-type-specific manner, with greater potency for inhibition of glutamate and SST+ compared with PV+ and VIP+ neurone presynaptic activation. In contrast, clinical concentrations of propofol (1 µM) or ketamine (15 µM) had no significant effects on presynaptic activation. Propofol potentiated evoked Ca2+ entry in PV+ interneurones but only at a supraclinical concentration (3 µM). CONCLUSIONS: Anaesthetic-agent-selective effects on presynaptic Ca2+ entry have functional implications for hippocampal circuit function during i.v. or volatile anaesthetic-mediated anaesthesia. Hippocampal interneurones have distinct subtype-specific sensitivities to volatile anaesthetic actions on presynaptic Ca2+, which are similar between isoflurane and sevoflurane.


Assuntos
Anestésicos Inalatórios , Isoflurano , Ketamina , Propofol , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Cálcio , Neurônios GABAérgicos , Hipocampo , Humanos , Isoflurano/farmacologia , Ketamina/farmacologia , Camundongos , Propofol/farmacologia , Sevoflurano/farmacologia
2.
Br J Anaesth ; 127(4): 587-599, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34384592

RESUMO

BACKGROUND: The cellular and molecular mechanisms by which general anaesthesia occurs is poorly understood. Hippocampal interneurone subpopulations, which are critical regulators of cognitive function, have diverse neurophysiological and synaptic properties, but their responses to anaesthetics are unclear. METHODS: We used live-cell imaging of fluorescent biosensors expressed in mouse hippocampal neurones to delineate interneurone subtype-specific effects of isoflurane on synaptic vesicle exocytosis. The role of voltage-gated sodium channel (Nav) subtype expression in determining isoflurane sensitivity was probed by overexpression or knockdown of specific Nav subtypes in identified interneurones. RESULTS: Clinically relevant concentrations of isoflurane differentially inhibited synaptic vesicle exocytosis: to 83.1% (11.7%) of control in parvalbumin-expressing interneurones, and to 58.6% (13.3%) and 64.5% (8.5%) of control in somatostatin-expressing interneurones and glutamatergic neurones, respectively. The relative expression of Nav1.1 (associated with lower sensitivity) and Nav1.6 (associated with higher sensitivity) determined the sensitivity of exocytosis to isoflurane. CONCLUSIONS: Isoflurane inhibits synaptic vesicle exocytosis from hippocampal glutamatergic neurones and GABAergic interneurones in a cell-type-specific manner depending on their expression of voltage-gated sodium channel subtypes.


Assuntos
Anestésicos Inalatórios/farmacologia , Hipocampo/efeitos dos fármacos , Isoflurano/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Exocitose/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
3.
Front Synaptic Neurosci ; 13: 812905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153712

RESUMO

General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.

4.
Anesth Analg ; 129(1): 192-203, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31082969

RESUMO

BACKGROUND: Clinical studies implicate the perioperative period in cognitive complications, and increasing experimental evidence shows that the anesthetic agents can affect neuronal processes that underpin learning and memory. Calcineurin, a Ca-dependent phosphatase critically involved in synaptic plasticity, is activated after isoflurane exposure, but its role in the neurological response to anesthesia is unclear. METHODS: We investigated the effect of chronic calcineurin inhibition on postanesthetic cognitive function. Mice were treated with 30 minutes of isoflurane anesthesia during a chronic cyclosporine A regimen. Behavioral end points during the perianesthesia period were quantified. Visuospatial learning was assessed with the water radial arm maze. Total and biotinylated surface protein expression of the α5ß3γ2 γ-aminobutyric acid (GABA) type A receptors was measured. Expression of the GABA synthesis enzyme glutamate decarboxylase (GAD)-67 was also measured. RESULTS: Mice treated with cyclosporine A before anesthesia showed significant deficits in visuospatial learning compared to sham and cyclosporine A-treated mice (n = 10 per group, P = .0152, Tukey post hoc test). Induction and emergence were unaltered by cyclosporine A. Analysis of hippocampal protein expression revealed an increased surface expression of the α5 GABA type A receptor subunit after isoflurane treatment (P = .019, Dunnett post hoc testing), as well as a decrease in GAD-67 expression. Cyclosporine A did not rescue either effect. CONCLUSIONS: Our results confirm the work of others that isoflurane induces changes to inhibitory network function and exclude calcineurin inhibition via cyclosporine A as an intervention. Further, our studies suggest that calcineurin mediates a protective role in the neurological response to anesthesia, and patients receiving cyclosporine A may be an at-risk group for memory problems related to anesthesia.


Assuntos
Anestésicos Inalatórios/toxicidade , Comportamento Animal/efeitos dos fármacos , Inibidores de Calcineurina/toxicidade , Ciclosporina/toxicidade , Hipocampo/efeitos dos fármacos , Isoflurano/toxicidade , Memória/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Fatores de Tempo
5.
Neurochem Res ; 42(11): 3220-3232, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770436

RESUMO

Although antiretroviral (ARV) therapy has reduced the incidence of severe dementia associated with HIV infection, there has been a rise in milder neurocognitive complaints. Data from HIV patients taking ARVs have shown measurable neurocognitive improvements during drug cessation, suggesting a neurotoxic role of the therapy itself. Mechanisms underlying potential ARV neurotoxicity have not been thoroughly investigated, however pathologic oxidative stress and mitochondrial dysfunction have been suspected. Using DIV 16 primary rat cortical neuron culture, we tested eight ARVs from the three most commonly prescribed ARV classes: nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs) for effects on neuron viability and morphology after 24 h of drug exposure. Of the tested NRTIs, only stavudine at nearly 100 times the target plasma concentration affected neuron viability with no appreciable change in morphology. Dideoxyinosine induced dendritic simplification at 100 times target plasma concentrations, but did not adversely affect viability. The sole NtRTI, tenofovir, induced dendritic simplification at approximately 3-4 times target plasma concentration, but did not affect viability. Of the tested PIs, only amprenavir decreased neuron viability at nearly 100 times the target plasma concentration. The non-nucleoside reverse transcriptase inhibitor, efavirenz, consistently reduced viability (at 50 µM) and induced dendritic simplification (at 20 µM) nearest the target plasma concentration. Probing mitochondrial energetics of DIV16 cortical neurons after exposure to 20 µM efavirenz showed rapid diminution of mitochondrial-dependent oxygen consumption. Further, 20 µM efavirenz decreased excitability in ex vivo slice culture whereas 2 µM had no effect.


Assuntos
Fármacos Anti-HIV/toxicidade , Antirretrovirais/toxicidade , Benzoxazinas/toxicidade , Inibidores da Transcriptase Reversa/toxicidade , Alcinos , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Ciclopropanos , Relação Dose-Resposta a Droga , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...