Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(3): 2650-2661, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27992165

RESUMO

Self-supported fcc Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) alloys were studied as potential hydrogen purification membranes. The effects of small additions (1-2.6 at. %) of these elements on the structure, hydrogen solubility, diffusivity, and permeability were examined. Structural analyses by X-ray diffraction (XRD) showed the fcc phase for all alloys with induced textures from cold rolling. Heat treatment at 650 °C for 96 h led to the reorientation in all alloys except the Pd-Cu-Zr alloy, exhibiting the possibility to enhance the structural stability by Zr addition. Hydrogen solubility was almost doubled in the ternary alloys containing Y and Zr compared to Pd65.1Cu34.9 alloy at 300 °C. It was noted that hydrogen diffusivity is decreased upon additions of these elements compared to the Pd65.1Cu34.9 alloy, with the Pd-Cu-Zr alloy showing the lowest hydrogen diffusivity. However, the comparable hydrogen permeability of the Pd-Cu-Zr alloy with the corresponding binary alloy, as well as its highest hydrogen permeability among the studied ternary alloys at temperatures higher than 300 °C, suggested that hydrogen permeation of these alloys within the fcc phase is mainly dominated by hydrogen solubility. Hydrogen flux variations of all ternary alloys were studied and compared with the Pd65.1Cu34.9 alloy under 1000 ppm of H2S + H2 feed gas. Pd-Cu-Zr alloy showed superior resistance to the sulfur poisoning probably due to the less favorable H2S-surface interaction and more importantly slower rate of bulk sulfidation as a result of improved structural stability upon Zr addition. Therefore, Pd-Cu-Zr alloys may offer new potential hydrogen purification membranes with improved chemical stability and hydrogen permeation compared to the binary fcc Pd-Cu alloys.

2.
Environ Sci Technol ; 48(7): 3951-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24576005

RESUMO

Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).


Assuntos
Imãs , Metais Terras Raras/análise , Boro/química , Ferro/química , Neodímio/química , Óxidos/química , Reciclagem
3.
Chem Commun (Camb) ; (22): 2823-5, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15928770

RESUMO

We report the discovery of a new, chemical route for 'activating' the hydrogen store MgH2, that results in highly effective hydrogen uptake/release characteristics, comparable to those obtained from mechanically-milled material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...