Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Sci Adv ; 10(25): eado1583, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905335

RESUMO

Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neuroblastoma , Peixe-Zebra , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Crista Neural/metabolismo , Crista Neural/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia
2.
iScience ; 27(1): 108096, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38222111

RESUMO

Studies defining normal and disrupted human neural crest cell development have been challenging given its early timing and intricacy of development. Consequently, insight into the early disruptive events causing a neural crest related disease such as pediatric cancer neuroblastoma is limited. To overcome this problem, we developed an in vitro differentiation model to recapitulate the normal in vivo developmental process of the sympathoadrenal lineage which gives rise to neuroblastoma. We used human in vitro pluripotent stem cells and single-cell RNA sequencing to recapitulate the molecular events during sympathoadrenal development. We provide a detailed map of dynamically regulated transcriptomes during sympathoblast formation and illustrate the power of this model to study early events of the development of human neuroblastoma, identifying a distinct subpopulation of cell marked by SOX2 expression in developing sympathoblast obtained from patient derived iPSC cells harboring a germline activating mutation in the anaplastic lymphoma kinase (ALK) gene.

3.
PLoS One ; 19(1): e0296322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181013

RESUMO

In biomedical research, high-throughput screening is often applied as it comes with automatization, higher-efficiency, and more and faster results. High-throughput screening experiments encompass drug, drug combination, genetic perturbagen or a combination of genetic and chemical perturbagen screens. These experiments are conducted in real-time assays over time or in an endpoint assay. The data analysis consists of data cleaning and structuring, as well as further data processing and visualisation, which, due to the amount of data, can easily become laborious, time-consuming and error-prone. Therefore, several tools have been developed to aid researchers in this process, but these typically focus on specific experimental set-ups and are unable to process data of several time points and genetic-chemical perturbagen screens. To meet these needs, we developed HTSplotter, a web tool and Python module that performs automatic data analysis and visualization of visualization of eitherendpoint or real-time assays from different high-throughput screening experiments: drug, drug combination, genetic perturbagen and genetic-chemical perturbagen screens. HTSplotter implements an algorithm based on conditional statements to identify experiment types and controls. After appropriate data normalization, including growth rate normalization, HTSplotter executes downstream analyses such as dose-response relationship and drug synergism assessment by the Bliss independence (BI), Zero Interaction Potency (ZIP) and Highest Single Agent (HSA) methods. All results are exported as a text file and plots are saved in a PDF file. The main advantage of HTSplotter over other available tools is the automatic analysis of genetic-chemical perturbagen screens and real-time assays where growth rate and perturbagen effect results are plotted over time. In conclusion, HTSplotter allows for the automatic end-to-end data processing, analysis and visualisation of various high-throughput in vitro cell culture screens, offering major improvements in terms of versatility, efficiency and time over existing tools.


Assuntos
Algoritmos , Pesquisa Biomédica , Bioensaio , Análise de Dados , Combinação de Medicamentos
4.
NAR Cancer ; 6(1): zcad062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213997

RESUMO

Neuroblastoma (NB) is the most common cancer in infancy with an urgent need for more efficient targeted therapies. The development of novel (combinatorial) treatment strategies relies on extensive explorations of signaling perturbations in neuroblastoma cell lines, using RNA-Seq or other high throughput technologies (e.g. phosphoproteomics). This typically requires dedicated bioinformatics support, which is not always available. Additionally, while data from published studies are highly valuable and raw data (e.g. fastq files) are nowadays released in public repositories, data processing is time-consuming and again difficult without bioinformatics support. To facilitate NB research, more user-friendly and immediately accessible platforms are needed to explore newly generated as well as existing high throughput data. To make this possible, we developed an interactive data centralization and visualization web application, called CLEAN (the Cell Line Explorer web Application of Neuroblastoma data; https://ccgg.ugent.be/shiny/clean/). By focusing on the regulation of the DNA damage response, a therapeutic target of major interest in neuroblastoma, we demonstrate how CLEAN can be used to gain novel mechanistic insights and identify putative drug targets in neuroblastoma.

5.
Oncogene ; 43(5): 363-377, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049564

RESUMO

Many of the pro-tumorigenic functions of the oncogene MYCN are attributed to its regulation of global gene expression programs. Alternative splicing is another important regulator of gene expression and has been implicated in neuroblastoma development, however, the molecular mechanisms remain unknown. We found that MYCN up-regulated the expression of the core spliceosomal protein, SNRPD3, in models of neuroblastoma initiation and progression. High mRNA expression of SNRPD3 in human neuroblastoma tissues was a strong, independent prognostic factor for poor patient outcome. Repression of SNRPD3 expression correlated with loss of colony formation in vitro and reduced tumorigenicity in vivo. The effect of SNRPD3 on cell viability was in part dependent on MYCN as an oncogenic co-factor. RNA-sequencing revealed a global increase in the number of genes being differentially spliced when MYCN was overexpressed. Surprisingly, depletion of SNRPD3 in the presence of overexpressed MYCN further increased differential splicing, particularly of cell cycle regulators, such as BIRC5 and CDK10. MYCN directly bound SNRPD3, and the protein arginine methyltransferase, PRMT5, consequently increasing SNRPD3 methylation. Indeed, the PRMT5 inhibitor, JNJ-64619178, reduced cell viability and SNRPD3 methylation in neuroblastoma cells with high SNRPD3 and MYCN expression. Our findings demonstrate a functional relationship between MYCN and SNRPD3, which maintains the fidelity of MYCN-driven alternative splicing in the narrow range required for neuroblastoma cell growth. SNRPD3 methylation and its protein-protein interface with MYCN represent novel therapeutic targets. Hypothetical model for SNRPD3 as a co-factor for MYCN oncogenesis. SNRPD3 and MYCN participate in a regulatory loop to balance splicing fidelity in neuroblastoma cells. First MYCN transactivates SNRPD3 to lead to high-level expression. Second, SNRPD3 and MYCN form a protein complex involving PRMT5. Third, this leads to balanced alterative splicing (AS) activitiy that is favorable to neuroblastoma. Together this forms as a therapeutic vulnerability where SNRPD3 perturbation or PRMT5 inhibitors are selectively toxic to neuroblastoma by conditionally disturbing splicing activity.


Assuntos
Processamento Alternativo , Neuroblastoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Processamento Alternativo/genética , Proteínas Oncogênicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neuroblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/genética , Quinases Ciclina-Dependentes/genética
6.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958555

RESUMO

MYCN amplification occurs in approximately 20-30% of neuroblastoma patients and correlates with poor prognosis. The TH-MYCN transgenic mouse model mimics the development of human high-risk neuroblastoma and provides strong evidence for the oncogenic function of MYCN. In this study, we identified mitotic dysregulation as a hallmark of tumor initiation in the pre-cancerous ganglia from TH-MYCN mice that persists through tumor progression. Single-cell quantitative-PCR of coeliac ganglia from 10-day-old TH-MYCN mice revealed overexpression of mitotic genes in a subpopulation of premalignant neuroblasts at a level similar to single cells derived from established tumors. Prophylactic treatment using antimitotic agents barasertib and vincristine significantly delayed the onset of tumor formation, reduced pre-malignant neuroblast hyperplasia, and prolonged survival in TH-MYCN mice. Analysis of human neuroblastoma tumor cohorts showed a strong correlation between dysregulated mitosis and features of MYCN amplification, such as MYC(N) transcriptional activity, poor overall survival, and other clinical predictors of aggressive disease. To explore the therapeutic potential of targeting mitotic dysregulation, we showed that genetic and chemical inhibition of mitosis led to selective cell death in neuroblastoma cell lines with MYCN over-expression. Moreover, combination therapy with antimitotic compounds and BCL2 inhibitors exploited mitotic stress induced by antimitotics and was synergistically toxic to neuroblastoma cell lines. These results collectively suggest that mitotic dysregulation is a key component of tumorigenesis in early neuroblasts, which can be inhibited by the combination of antimitotic compounds and pro-apoptotic compounds in MYCN-driven neuroblastoma.


Assuntos
Antimitóticos , Neuroblastoma , Humanos , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Camundongos Transgênicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica
7.
Sci Adv ; 9(9): eabp8314, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867694

RESUMO

Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neuroblastoma , Humanos , Apoptose , Transdução de Sinais , Inibidores de Histona Desacetilases
8.
Nat Commun ; 14(1): 1267, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882421

RESUMO

The pediatric extra-cranial tumor neuroblastoma displays a low mutational burden while recurrent copy number alterations are present in most high-risk cases. Here, we identify SOX11 as a dependency transcription factor in adrenergic neuroblastoma based on recurrent chromosome 2p focal gains and amplifications, specific expression in the normal sympatho-adrenal lineage and adrenergic neuroblastoma, regulation by multiple adrenergic specific (super-)enhancers and strong dependency on high SOX11 expression in adrenergic neuroblastomas. SOX11 regulated direct targets include genes implicated in epigenetic control, cytoskeleton and neurodevelopment. Most notably, SOX11 controls chromatin regulatory complexes, including 10 SWI/SNF core components among which SMARCC1, SMARCA4/BRG1 and ARID1A. Additionally, the histone deacetylase HDAC2, PRC1 complex component CBX2, chromatin-modifying enzyme KDM1A/LSD1 and pioneer factor c-MYB are regulated by SOX11. Finally, SOX11 is identified as a core transcription factor of the core regulatory circuitry (CRC) in adrenergic high-risk neuroblastoma with a potential role as epigenetic master regulator upstream of the CRC.


Assuntos
Neuroblastoma , Humanos , Criança , Neuroblastoma/genética , Fatores de Transcrição/genética , Cromatina , Núcleo Celular , Aberrações Cromossômicas , Adrenérgicos , DNA Helicases , Proteínas Nucleares/genética , Fatores de Transcrição SOXC/genética , Histona Desmetilases
9.
NAR Cancer ; 5(1): zcad002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683916

RESUMO

Accurate assessment of treatment response and residual disease is indispensable for the evaluation of cancer treatment efficacy. However, performing tissue biopsies for longitudinal follow-up poses a major challenge in the management of solid tumours like neuroblastoma. In the present study, we evaluated whether circulating miRNAs are suitable to monitor neuroblastoma tumour burden and whether treatment-induced changes of miRNA abundance in the tumour are detectable in serum. We performed small RNA sequencing on longitudinally collected serum samples from mice carrying orthotopic neuroblastoma xenografts that were exposed to treatment with idasanutlin or temsirolimus. We identified 57 serum miRNAs to be differentially expressed upon xenograft tumour manifestation, out of which 21 were also found specifically expressed in the serum of human high-risk neuroblastoma patients. The murine serum levels of these 57 miRNAs correlated with tumour tissue expression and tumour volume, suggesting potential utility for monitoring tumour burden. In addition, we describe serum miRNAs that dynamically respond to p53 activation following treatment of engrafted mice with idasanutlin. We identified idasanutlin-induced serum miRNA expression changes upon one day and 11 days of treatment. By limiting to miRNAs with a tumour-related induction, we put forward hsa-miR-34a-5p as a potential pharmacodynamic biomarker of p53 activation in serum.

10.
NAR Cancer ; 4(4): zcac037, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36451702

RESUMO

While cell-free DNA (cfDNA) is widely being investigated, free circulating RNA (extracellular RNA, exRNA) has the potential to improve cancer therapy response monitoring and detection due to its dynamic nature. However, it remains unclear in which blood subcompartment tumour-derived exRNAs primarily reside. We developed a host-xenograft deconvolution framework, exRNAxeno, with mapping strategies to either a combined human-mouse reference genome or both species genomes in parallel, applicable to exRNA sequencing data from liquid biopsies of human xenograft mouse models. The tool enables to distinguish (human) tumoural RNA from (murine) host RNA, to specifically analyse tumour-derived exRNA. We applied the combined pipeline to total exRNA sequencing data from 95 blood-derived liquid biopsy samples from 30 mice, xenografted with 11 different tumours. Tumoural exRNA concentrations are not determined by plasma platelet levels, while host exRNA concentrations increase with platelet content. Furthermore, a large variability in exRNA abundance and transcript content across individual mice is observed. The tumoural gene detectability in plasma is largely correlated with the RNA expression levels in the tumour tissue or cell line. These findings unravel new aspects of tumour-derived exRNA biology in xenograft models and open new avenues to further investigate the role of exRNA in cancer.

11.
Sci Adv ; 8(28): eabn1382, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857500

RESUMO

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.

12.
Br J Cancer ; 126(11): 1529-1538, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35197583

RESUMO

Neuroblastoma is a tumour that arises from the sympathoadrenal lineage occurring predominantly in children younger than five years. About half of the patients are diagnosed with high-risk tumours and undergo intensive multi-modal therapy. The success rate of current treatments for high-risk neuroblastoma is disappointingly low and survivors suffer from multiple therapy-related long-term side effects. Most chemotherapeutics drive cancer cells towards cell death or senescence. Senescence has long been considered to represent a terminal non-proliferative state and therefore an effective barrier against tumorigenesis. This dogma, however, has been challenged by recent observations that infer a much more dynamic and reversible nature for this process, which may have implications for the efficacy of therapy-induced senescence-oriented treatment strategies. Neuroblastoma cells in a dormant, senescent-like state may escape therapy, whilst their senescence-associated secretome may promote inflammation and invasiveness, potentially fostering relapse. Conversely, due to its distinct molecular identity, senescence may also represent an opportunity for the development of novel (combination) therapies. However, the limited knowledge on the molecular dynamics and diversity of senescence signatures demands appropriate models to study this process in detail. This review summarises the molecular knowledge about cellular senescence in neuroblastoma and investigates current and future options towards therapeutic exploration.


Assuntos
Recidiva Local de Neoplasia , Neuroblastoma , Transformação Celular Neoplásica , Senescência Celular , Criança , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/terapia
13.
Eur J Cancer ; 160: 12-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794856

RESUMO

BACKGROUND: Paediatric tumours are often characterised by the presence of recurrent DNA copy number alterations (CNAs). These DNA copy number profiles, obtained from a tissue biopsy, can aid in the correct prognostic classification and therapeutic stratification of several paediatric cancer entities (e.g. MYCN amplification in neuroblastoma) and are part of the routine diagnostic practice. Liquid biopsies (LQBs) offer a potentially safer alternative for such invasive tumour tissue biopsies and can provide deeper insight into tumour heterogeneity. PROCEDURE: The robustness and reliability of LQB CNA analyses was evaluated. We performed retrospective CNA profiling using shallow whole-genome sequencing (sWGS) on paired plasma circulating cell-free DNA (cfDNA) and tissue DNA samples from routinely collected samples from paediatric patients (n = 128) representing different tumour entities, including osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, Wilms tumour, brain tumours and neuroblastoma. RESULTS: Overall, we observed a good concordance between CNAs in tissue DNA and cfDNA. The main cause of CNA discordance was found to be low cfDNA sample quality (i.e. the ratio of cfDNA (<700 bp) and high molecular weight DNA (>700 bp)). Furthermore, CNAs were observed that were present in cfDNA and not in tissue DNA, or vice-versa. In neuroblastoma samples, no false-positives or false-negatives were identified for the detection of the prognostic marker MYCN amplification. CONCLUSION: In future prospective studies, CNA analysis on LQBs that are of sufficient quality can serve as a complementary assay for CNA analysis on tissue biopsies, as either cfDNA or tissue DNA can contain CNAs that cannot be identified in the other biomaterial.


Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Biópsia Líquida/métodos , Adolescente , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Humanos , Masculino , Estudos Prospectivos , Estudos Retrospectivos
14.
J Pers Med ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34945759

RESUMO

Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.

15.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638267

RESUMO

Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma.

16.
Sci Rep ; 11(1): 14454, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262099

RESUMO

MYCN is an oncogenic driver in neural crest-derived neuroblastoma and medulloblastoma. To better understand the early effects of MYCN activation in a neural-crest lineage context, we profiled the transcriptome of immortalized human retina pigment epithelial cells with inducible MYCN activation. Gene signatures associated with elevated MYC/MYCN activity were induced after 24 h of MYCN activation, which attenuated but sustained at later time points. Unexpectedly, MYCN activation was accompanied by reduced cell growth. Gene set enrichment analysis revealed a senescence-like signature with strong induction of p53 and p21 but in the absence of canonical hallmarks of senescence such as ß-galactosidase positivity, suggesting incomplete cell fate commitment. When scrutinizing the putative drivers of this growth attenuation, differential gene expression analysis identified several regulators of nucleolar stress. This process was also reflected by phenotypic correlates such as cytoplasmic granule accrual and nucleolar coalescence. Hence, we propose that the induction of MYCN congests the translational machinery, causing nucleolar stress and driving cells into a transient pre-senescent state. Our findings shed new light on the early events induced by MYCN activation and may help unravelling which factors are required for cells to tolerate unscheduled MYCN overexpression during early malignant transformation.


Assuntos
Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Crista Neural/metabolismo , Proteínas Proto-Oncogênicas c-myc
17.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918978

RESUMO

Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.

18.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33658318

RESUMO

The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Neurônios Adrenérgicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Pré-Escolar , Bases de Dados Genéticas , Feminino , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Masculino , Neuroblastoma/patologia , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
19.
Genes Chromosomes Cancer ; 60(4): 272-281, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336840

RESUMO

Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+). The selective advantage of DNA copy number changes in these cells has been attributed to several underlying processes including enhanced proliferation. We hypothesized that these recurrent chromosomal imbalances become rapidly embedded in the cultured hESCs through a replicative stress driven Darwinian selection process. To this end, we compared the effect of hydroxyurea-induced replicative stress vs normal growth conditions in an equally mixed cell population of isogenic euploid and 17q + hESCs. We could show that 17q + hESCs rapidly overtook normal hESCs. Our data suggest that recurrent chromosomal segmental gains provide a proliferative advantage to hESCs under increased replicative stress, a process that may also explain the highly recurrent nature of certain imbalances in cancer.


Assuntos
Divisão Celular , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/citologia , Seleção Genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 17 , Variações do Número de Cópias de DNA , Humanos , Hidroxiureia , Estresse Fisiológico , Transcriptoma
20.
Blood Adv ; 4(23): 5902-5914, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33259601

RESUMO

Circular RNAs (circRNAs) are stable RNA molecules that can drive cancer through interactions with microRNAs and proteins and by the expression of circRNA encoded peptides. The aim of the study was to define the circRNA landscape and potential impact in T-cell acute lymphoblastic leukemia (T-ALL). Analysis by CirComPara of RNA-sequencing data from 25 T-ALL patients, immature, HOXA overexpressing, TLX1, TLX3, TAL1, or LMO2 rearranged, and from thymocyte populations of human healthy donors disclosed 68 554 circRNAs. Study of the top 3447 highly expressed circRNAs identified 944 circRNAs with significant differential expression between malignant T cells and normal counterparts, with most circRNAs displaying increased expression in T-ALL. Next, we defined subtype-specific circRNA signatures in molecular genetic subgroups of human T-ALL. In particular, circZNF609, circPSEN1, circKPNA5, and circCEP70 were upregulated in immature, circTASP1, circZBTB44, and circBACH1 in TLX3, circHACD1, and circSTAM in HOXA, circCAMSAP1 in TLX1, and circCASC15 in TAL-LMO. Backsplice sequences of 14 circRNAs ectopically expressed in T-ALL were confirmed, and overexpression of circRNAs in T-ALL with specific oncogenic lesions was substantiated by quantification in a panel of 13 human cell lines. An oncogenic role of circZNF609 in T-ALL was indicated by decreased cell viability upon silencing in vitro. Furthermore, functional predictions identified circRNA-microRNA gene axes informing modes of circRNA impact in molecular subtypes of human T-ALL.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linhagem Celular , Expressão Ectópica do Gene , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , RNA Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...