Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(10): e2206485, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650990

RESUMO

Pulsed laser fragmentation of microparticles (MPs) in liquid is a synthesis method for producing high-purity nanoparticles (NPs) from virtually any material. Compared with laser ablation in liquids (LAL), the use of MPs enables a fully continuous, single-step synthesis of colloidal NPs. Although having been employed in several studies, neither the fragmentation mechanism nor the efficiency or scalability have been described. Starting from time-resolved investigations of the single-pulse fragmentation of single IrO2 MPs in water, the contribution of stress-mediated processes to the fragmentation mechanism is highlighted. Single-pulse, multiparticle fragmentation is then performed in a continuously operated liquid jet. Here, 2 nm-sized nanoclusters (NCs) accompanied by larger fragments with sizes ranging between several ten nm and several µm are generated. For the nanosized product, an unprecedented efficiency of up to 18 µg J-1 is reached, which exceeds comparable values reported for high-power LAL by one order of magnitude. The generated NCs exhibit high catalytic activity and stability in oxygen evolution reactions while simultaneously expressing a redox-sensitive fluorescence, thus rendering them promising candidates in electrocatalytic sensing. The provided insights will pave the way for laser fragmentation of MPs to become a versatile, scalable yet simple technique for nanomaterial design and development.

2.
Light Sci Appl ; 11(1): 68, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322802

RESUMO

Laser ablation in liquids is a highly interdisciplinary method at the intersection of physics and chemistry that offers the unique opportunity to generate surfactant-free and stable nanoparticles from virtually any material. Over the last decades, numerous experimental and computational studies aimed to reveal the transient processes governing laser ablation in liquids. Most experimental studies investigated the involved processes on timescales ranging from nanoseconds to microseconds. However, the ablation dynamics occurring on a sub-nanosecond timescale are of fundamental importance, as the conditions under which nanoparticles are generated are established within this timeframe. Furthermore, experimental investigations of the early timescales are required to test computational predictions. We visualize the complete spatiotemporal picosecond laser-induced ablation dynamics of gold immersed in air and water using ultrafast pump-probe microscopy. Transient reflectivity measurements reveal that the water confinement layer significantly influences the ablation dynamics on the entire investigated timescale from picoseconds to microseconds. The influence of the water confinement layer includes the electron injection and subsequent formation of a dense plasma on a picosecond timescale, the confinement of ablation products within hundreds of picoseconds, and the generation of a cavitation bubble on a nanosecond timescale. Moreover, we are able to locate the temporal appearance of secondary nanoparticles at about 600 ps after pulse impact. The results support computational predictions and provide valuable insight into the early-stage ablation dynamics governing laser ablation in liquids.

3.
Opt Express ; 29(10): 14561-14581, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985177

RESUMO

In this work, we investigate single-pulse laser ablation of bulk stainless steel (AISI304), aluminium (Al) and copper (Cu) and its dependence on the pulse duration. We measured the reflectivity, ablation thresholds and volumes under the variation of pulse duration and fluence. The known drop of efficiency with increasing pulse duration is confirmed for single-pulse ablation in all three metals. We attribute the efficiency drop to a weakened photomechanically driven ablation process and a stronger contribution of photothermal phase explosion. The highest energetic efficiency and precision is achieved for pulse durations below the mechanical expansion time of 3-5 ps, where the stress confinement condition is fulfilled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...