Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 14(6): 064104, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33224403

RESUMO

Size-based particle separation using inertial microfluidics in spiral channels has been well studied over the past decade. Though these devices can effectively separate particles, they require a relatively large device footprint with a typical outer channel radius of approximately 15 mm. In this paper, we describe a microfluidic device with a footprint diameter of 5.5 mm, containing a helical channel capable of inertial particle separation fabricated using abrasive jet micromachining. The separation of particles in several channel geometries was studied using wide-field fluorescence microscopy. A maximum separation efficiency of approximately 90% was achieved at a flow rate of 1.5 ml/min with a purity of approximately 95% at the outlet, where large particles were collected. An accompanying computational fluid dynamics model was developed to allow researchers to quickly assess the separation capability of their helical or spiral devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...