Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 1542, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038615

RESUMO

Human eosinophils release numerous cytokines that are pre-synthesized and stored within their cytoplasmic-specific (secretory) granules. For example, high levels of interferon-gamma (IFN-γ) are constitutively expressed in these cells, but the intracellular compartments involved in the transport and release of this cytokine remain to be established. In this work, we used a single-cell approach to investigate the subcellular localization of IFN-γ in human eosinophils stimulated or not with tumor necrosis factor alpha (TNF-α) or CC-chemokine ligand 11 CCL11 (eotaxin-1), inflammatory mediators that induce eosinophil activation and secretion. A pre-embedding immunonanogold transmission electron microscopy (TEM) technique that combines optimal epitope preservation and access to membrane microdomains was applied to detect precise localization of IFN-γ in combination with computational quantitative analyses. In parallel, degranulation processes and formation of eosinophil sombrero vesicles (EoSVs), large transport carriers involved in the transport of granule-derived cytokines, were investigated. Quantitative TEM revealed that both CCL11 and TNF-α-activated eosinophils significantly increased the total number of EoSVs compared to the unstimulated group, indicating that this vesicular system is actively formed in response to cell activation. Ultrastructural immunolabeling identified a robust pool of IFN-γ on secretory granules in both unstimulated and stimulated cells. Moreover, EoSVs carrying IFN-γ were seen around or/and in contact with secretory granules and also distributed in the cytoplasm. Labeling was clearly associated with EoSV membranes. The total number of IFN-γ-positive EoSVs was significantly higher in stimulated compared to unstimulated cells, and these labeled vesicles had a differential distribution in the cytoplasm of activated cells, being significantly higher in the cell periphery compared with the inner cell, thus revealing intracellular IFN-γ mobilization for release. IFN-γ extracellular labeling was found at the cell surface, including on extracellular vesicles. Our results provide direct evidence that human eosinophils compartmentalize IFN-γ within secretory granules and identify, for the first time, a vesicular trafficking of IFN-γ associated with large transport carriers. This is important to understand how IFN-γ is trafficked and secreted during inflammatory responses.

2.
Lab Invest ; 89(7): 769-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19398958

RESUMO

Major basic protein (MBP), the predominant cationic protein of human eosinophil specific granules, is stored within crystalloid cores of these granules. Secretion of MBP contributes to the immunopathogenesis of varied diseases. Prior electron microscopy (EM) of eosinophils in sites of inflammation noted losses of granule cores in the absence of granule exocytosis and suggested that eosinophil granule proteins might be released through piecemeal degranulation (PMD), a secretory process mediated by transport vesicles. Because release of eosinophil granule-derived MBP through PMD has not been studied, we evaluated secretion of this cationic protein by human eosinophils. Intracellular localizations of MBP were studied within nonstimulated and eotaxin-stimulated human eosinophils by both immunofluorescence and a pre-embedding immunonanogold EM method that enables optimal epitope preservation and antigen access to membrane microdomains. In parallel, quantification of transport vesicles was assessed in eosinophils from a patient with hypereosinophilic syndrome (HES). Our data demonstrate vesicular trafficking of MBP within eotaxin-stimulated eosinophils. Vesicular compartments, previously implicated in transport from granules to the plasma membrane, including large vesiculotubular carriers termed eosinophil sombrero vesicles (EoSVs), were found to contain MBP. These secretory compartments were significantly increased in numbers within HES eosinophils. Moreover, in addition to granule-stored MBP, even unstimulated eosinophils contained appreciable amounts of MBP within secretory vesicles, as evidenced by immunonanogold EM and immunofluorescent colocalizations of MBP and CD63. These data suggest that eosinophil MBP, with its multiple extracellular activities, can be mobilized from granules by PMD into secretory vesicles and both granule- and secretory vesicle-stored pools of MBP are available for agonist-elicited secretion of MBP from human eosinophils. The recognition of PMD as a secretory process to release MBP is important to understand the pathological basis of allergic and other eosinophil-associated inflammatory diseases.


Assuntos
Proteína Básica Maior de Eosinófilos/metabolismo , Eosinófilos/metabolismo , Transporte Biológico Ativo , Degranulação Celular , Quimiocina CCL11/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/fisiologia , Eosinófilos/ultraestrutura , Humanos , Síndrome Hipereosinofílica/fisiopatologia , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Proteínas Recombinantes/farmacologia , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura
3.
J Leukoc Biol ; 83(2): 229-36, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17875811

RESUMO

Eosinophils generate and store a battery of proteins, including classical cationic proteins, cytokines, chemokines, and growth factors. Rapid secretion of these active mediators by eosinophils is central to a range of inflammatory and immunoregulatory responses. Eosinophil products are packaged within a dominant population of cytoplasmic specific granules and generally secreted by piecemeal degranulation, a process mediated by transport vesicles. Large, pleiomorphic vesiculotubular carriers were identified recently as key players for moving eosinophil proteins from granules to the plasma membrane for extracellular release. During secretion, these specialized, morphologically distinct carriers, termed eosinophil sombrero vesicles, are actively formed and direct differential and rapid release of eosinophil proteins. This review highlights recent discoveries concerning the organization of the human eosinophil secretory pathway. These discoveries are defining a broader role for large vesiculotubular carriers in the intracellular trafficking and secretion of proteins, including selective receptor-mediated mobilization and transport of cytokines.


Assuntos
Citocinas/metabolismo , Proteínas Granulares de Eosinófilos/metabolismo , Eosinófilos/metabolismo , Vesículas Secretórias/metabolismo , Animais , Transporte Biológico , Compartimento Celular , Quimiocinas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Eosinófilos/ultraestrutura , Previsões , Humanos , Microscopia Eletrônica , Modelos Biológicos , Vesículas Secretórias/ultraestrutura
4.
Traffic ; 6(11): 1047-57, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16190985

RESUMO

Secretion of interleukin-4 (IL-4) by leukocytes is important for varied immune responses including allergic inflammation. Within eosinophils, unlike lymphocytes, IL-4 is stored in granules (termed specific granules) and can be rapidly released by brefeldin A (BFA)-inhibitable mechanisms upon stimulation with eotaxin, a chemokine that activates eosinophils. In studying eotaxin-elicited IL-4 secretion, we identified at the ultrastructural level distinct vesicular IL-4 transport mechanisms. Interleukin-4 traffics from granules via two vesicular compartments, large vesiculotubular carriers, which we term eosinophil sombrero vesicles (EoSV), and small classical spherical vesicles. These two vesicles may represent alternative pathways for transport to the plasma membrane. Loci of both secreted IL-4 and IL-4-loaded vesicles were imaged at the plasma membranes by a novel EliCell assay using a fluoronanogold probe. Three dimensional electron tomographic reconstructions revealed EoSVs to be folded, flattened and elongated tubules with substantial membrane surfaces. As documented with quantitative electron microscopy, eotaxin-induced significant formation of EoSVs while BFA pretreatment suppressed eotaxin-elicited EoSVs. Electron tomography showed that both EoSVs and small vesicles interact with and arise from granules in response to stimulation. Thus, this intracellular vesicular system mediates the rapid mobilization and secretion of preformed IL-4 by activated eosinophils. These findings, highlighting the participation of large tubular carriers, provide new insights into vesicular trafficking of cytokines.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Eosinófilos/metabolismo , Interleucina-4/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/ultraestrutura , Eosinófilos/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Transporte Proteico
5.
Traffic ; 6(10): 866-79, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16138901

RESUMO

Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release. Eosinophil-specific granules contain cytokines and cationic proteins, such as major basic protein (MBP). We evaluated structural mechanisms responsible for mobilizing proteins from within eosinophil granules. Human eosinophils stimulated for 30-60 min with eotaxin, regulated on activation, normal, T-cell expressed and secreted (RANTES) or platelet activating factor exhibited ultrastructural features of PMD (e.g. losses of granule contents) and extensive vesiculotubular networks within emptying granules. Brefeldin A inhibited granule emptying and collapsed intragranular vesiculotubular networks. By immunonanogold ultrastructural labelings, CD63, a tetraspanin membrane protein, was localized within granules and on vesicles outside of granules, and mobilization of MBP into vesicles within and extending from granules was demonstrated. Electron tomography with three dimension reconstructions revealed granule internal membranes to constitute an elaborate tubular network able to sequester and relocate granule products upon stimulation. We provide new insights into PMD and identify eosinophil specific granules as organelles whose internal tubulovesicular networks are important for the capacity of eosinophils to secrete, by vesicular transport, their content of preformed and granule-stored cytokines and cationic proteins.


Assuntos
Degranulação Celular , Proteínas Granulares de Eosinófilos/metabolismo , Eosinófilos/metabolismo , Eosinófilos/ultraestrutura , Membranas Intracelulares/metabolismo , Antígenos CD/metabolismo , Brefeldina A/metabolismo , Quimiocina CCL11 , Quimiocina CCL5/metabolismo , Quimiocinas CC/metabolismo , Fatores Quimiotáticos de Eosinófilos/metabolismo , Proteína Básica Maior de Eosinófilos/metabolismo , Humanos , Imageamento Tridimensional , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Tetraspanina 30
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA