Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838478

RESUMO

Microalgae are promising host organisms for the production of encapsulated recombinant proteins such as vaccines. However, bottlenecks in bioprocess development, such as the drying stage, need to be addressed to ensure feasibility at scale. In this study, we investigated the potential of spray drying to produce a recombinant vaccine in microalgae. A transformant line of Chlamydomonas reinhardtii carrying a subunit vaccine against salmonid alphavirus was created via chloroplast engineering. The integrity of the recombinant protein after spray drying and its stability after 27 months storage at -80 °C, +4 °C and room temperature were assessed by immunoblotting. The protein withstood spray drying without significant losses. Long-term storage at +4 °C and room temperature resulted in 50% and 92% degradation, respectively. Optimizing spray drying and storage conditions should minimize degradation and favour short-term storage at positive temperatures. Using data on yield and productivity, the economics of spray drying- and freeze drying-based bioprocesses were compared. The drying stage corresponded to 41% of the total production cost. Process optimization, genetic engineering and new market strategies were identified as potential targets for cost reduction. Overall, this study successfully demonstrates the suitability of spray drying as a process option for recombinant protein production in microalgae at the industrial scale.

2.
Proc Natl Acad Sci U S A ; 113(24): E3431-40, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247386

RESUMO

Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.


Assuntos
Celulose , Bacilos Gram-Positivos Asporogênicos , Engenharia Metabólica/métodos , Celulose/biossíntese , Celulose/genética , Bacilos Gram-Positivos Asporogênicos/genética , Bacilos Gram-Positivos Asporogênicos/isolamento & purificação , Bacilos Gram-Positivos Asporogênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...