Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(39): e2301264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337428

RESUMO

Polymer-electrolyte-membrane fuel cells (PEMFCs) hold great promise for applications in clean energy conversion, but cost and durability continue to limit commercialization. This work presents a new class of catalyst/electrode architecture that does not rely on Pt particles or carbon supports, eliminating the primary degradation mechanisms in conventional electrodes, and thereby enabling transformative durability improvements. The coaxial nanowire electrode (CANE) architecture consists of an array of vertically aligned nanowires, each comprising an ionomer core encapsulated by a nanoscale Pt film. This unique design eliminates the triple-phase boundary and replaces it with two double-phase boundaries, increasing Pt utilization. It also eliminates the need for carbon support and ionomer binder, enabling improved durability and faster mass transport. Fuel cell membrane electrode assemblies based on CANEs demonstrate extraordinary durability in accelerated stress tests (ASTs), with only 2% and 5% loss in performance after 5000 support AST cycles and 30000 catalysts AST cycles, respectively. The high power density and extremely high durability provided by CANEs can enable a paradigm shift from random electrodes based on unstable platinum nanoparticles dispersed on carbon to ordered electrodes based on durable Pt nanofilms, facilitating rapid deployment of fuel cells in transportation and other clean energy applications.

2.
ACS Appl Mater Interfaces ; 14(31): 35555-35568, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881157

RESUMO

Metal alloy catalysts (e.g., Pt-Co) are widely used in fuel cells for improving the oxygen reduction reaction kinetics. Despite the promise, the leaching of the alloying element contaminates the ionomer/membrane, leading to poor durability. However, the underlying mechanisms by which cation contamination affects fuel cell performance remain poorly understood. Here, we provide a comprehensive understanding of cation contamination effects through the controlled doping of electrodes. We couple electrochemical testing results with membrane conductivity/water uptake measurements and impedance modeling to pinpoint where and how the losses in performance occur. We identify that (1) ∼44% of Co2+ exchange of the ionomer can be tolerated in the electrode, (2) loss in performance is predominantly induced by O2 and proton transport losses, and (3) Co2+ preferentially resides in the electrode under wet operating conditions. Our results provide a first-of-its-kind mechanistic explanation for cation effects and inform strategies for mitigating these undesired effects when using alloy catalysts.

3.
Small ; 17(48): e2006805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34061449

RESUMO

Insufficient stability of current carbon supported Pt and Pt alloy catalysts is a significant barrier for proton-exchange membrane fuel cells (PEMFCs). As a primary degradation cause to trigger Pt nanoparticle migration, dissolution, and aggregation, carbon corrosion remains a significant challenge. Compared with enhancing Pt and PtM alloy particle stability, improving support stability is rather challenging due to carbon's thermodynamic instability under fuel cell operation. In recent years, significant efforts have been made to develop highly durable carbon-based supports concerning innovative nanostructure design and synthesis along with mechanistic understanding. This review critically discusses recent progress in developing carbon-based materials for Pt catalysts and provides synthesis-structure-performance correlations to elucidate underlying stability enhancement mechanisms. The mechanisms and impacts of carbon support degradation on Pt catalyst performance are first discussed. The general strategies are summarized to tailor the carbon structures and strengthen the metal-support interactions, followed by discussions on how these designs lead to enhanced support stability. Based on current experimental and theoretical studies, the critical features of carbon supports are analyzed concerning their impacts on the performance and durability of Pt catalysts in fuel cells. Finally, the perspectives are shared on future directions to develop advanced carbon materials with favorable morphologies and nanostructures to increase Pt utilization, strengthen metal-support interactions, facilitate mass/charge transfer, and enhance corrosion resistance.

4.
Nano Lett ; 18(7): 4163-4171, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29874468

RESUMO

Highly ordered Pt alloy structures are proven effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic-framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt3Co structures. It is very crucial for the formation of the ordered Pt3Co to carefully control the doping content of Co into the MOFs and the heating temperatures for Co diffusion. The optimal Pt3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs reversible hydrogen electrode (RHE) and only losing 12 mV after 30 000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests made evident by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt3Co intermetallic catalysts. The new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen and transition metal dopings.

5.
J Am Chem Soc ; 140(8): 2926-2932, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411604

RESUMO

We report in this article a detailed study on how to stabilize a first-row transition metal (M) in an intermetallic L10-MPt alloy nanoparticle (NP) structure and how to surround the L10-MPt with an atomic layer of Pt to enhance the electrocatalysis of Pt for oxygen reduction reaction (ORR) in fuel cell operation conditions. Using 8 nm FePt NPs as an example, we demonstrate that Fe can be stabilized more efficiently in a core/shell structured L10-FePt/Pt with a 5 Å Pt shell. The presence of Fe in the alloy core induces the desired compression of the thin Pt shell, especially the two atomic layers of Pt shell, further improving the ORR catalysis. This leads to much enhanced Pt catalysis for ORR in 0.1 M HClO4 solution (at both room temperature and 60 °C) and in the membrane electrode assembly (MEA) at 80 °C. The L10-FePt/Pt catalyst has a mass activity of 0.7 A/mgPt from the half-cell ORR test and shows no obvious mass activity loss after 30 000 potential cycles between 0.6 and 0.95 V at 80 °C in the MEA, meeting the DOE 2020 target (<40% loss in mass activity). We are extending the concept and preparing other L10-MPt/Pt NPs, such as L10-CoPt/Pt NPs, with reduced NP size as a highly efficient ORR catalyst for automotive fuel cell applications.

6.
Adv Mater ; 30(11)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29363838

RESUMO

Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 µg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.

7.
ACS Appl Mater Interfaces ; 6(22): 19783-90, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25329422

RESUMO

Substrate supported conductive thin films are prepared by the self-assembly of graphene oxide (GO) on a cationic polyacrylamide (CPAM) layer followed by a subsequent chemical reduction. During self-assembly, the dispersed GO nanosheets with a negative zeta potential from solution are spontaneously assembled onto the positively charged CPAM adsorption layer. In addition, CPAM adsorption on the substrate is studied with an electrochemical quartz crystal microbalance (EQCM), showing adsorption stabilization could be established in less than 150 s. The electrostatic interactions between GO and CPAM are investigated by changing the polarization potential with EQCM for the first time, and optimal conditions for facilitating self-assembly are determined. The self-assembled GO/CPAM films are further characterized by Raman spectroscopy, infrared spectroscopy and atomic force microscopy. Importantly, reduced GO (R-GO)/CPAM composite films exhibiting a sheet resistance of 3.1 kΩ/sq can be obtained via in situ reduction in sodium borohydride for 20 min at room temperature. This provides a simple, highly effective, and green route to prepare conductive graphene-based composite thin films.

8.
ACS Appl Mater Interfaces ; 6(2): 1243-50, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24377276

RESUMO

Nanostructured CuO anode materials with controllable morphologies have been successfully synthesized via a facile and environmentally friendly approach in the absence of any toxic surfactants or templates. In particular, leaf-like CuO, oatmeal-like CuO, and hollow-spherical CuO were obtained by changing the ligand agents. The structures and electrochemical performance of these as-prepared CuO were fully characterized by various techniques, and the properties were found to be strongly dependent on morphology. As anode materials for lithium-ion batteries, the leaf-like CuO and oatmeal-like CuO electrodes exhibit relatively high reversible capacities, whereas hollow-spherical CuO shows enhanced reversible capacity after initial degradation. Furthermore, an excellent high rate capability was obtained for the leaf-like CuO and hollow-spherical CuO electrodes. These results may provide valuable insights for the development of nanostructured anodes for next-generation high-performance lithium-ion batteries.

9.
ACS Appl Mater Interfaces ; 5(17): 8607-14, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23947768

RESUMO

We report an rGO/Fe2O3/SnO2 ternary nanocomposite synthesized via homogeneous precipitation of Fe2O3 nanoparticles onto graphene oxide (GO) followed by reduction of GO with SnCl2. The reduction mechanism of GO with SnCl2 and the effects of reduction temperature and time were examined. Accompanying the reduction of GO, particles of SnO2 were deposited on the GO surface. In the graphene nanocomposite, Fe2O3 nanoparticles with a size of ∼20 nm were uniformly dispersed surrounded by SnO2 nanoparticles, as demonstrated by transmission electron microscopy analysis. Due to the different lithium insertion/extraction potentials, the major role of SnO2 nanoparticles is to prevent aggregation of Fe2O3 during the cycling. Graphene can serve as a matrix for Li+ and electron transport and is capable of relieving the stress that would otherwise accumulate in the Fe2O3 nanoparticles during Li uptake/release. In turn, the dispersion of nanoparticles on graphene can mitigate the restacking of graphene sheets. As a result, the electrochemical performance of rGO/Fe2O3/SnO2 ternary nanocomposite as an anode in Li ion batteries is significantly improved, showing high initial discharge and charge capacities of 1179 and 746 mAhg(-1), respectively. Importantly, nearly 100% discharge-charge efficiency is maintained during the subsequent 100 cycles with a specific capacity above 700 mAhg(-1).


Assuntos
Fontes de Energia Elétrica , Compostos Férricos/química , Grafite/química , Lítio/química , Nanocompostos/química , Compostos de Estanho/química , Eletrodos , Íons/química
10.
Membranes (Basel) ; 2(4): 855-78, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24958432

RESUMO

Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

11.
Phys Chem Chem Phys ; 9(21): 2654-75, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627310

RESUMO

We present here a critical review of several technologically important electrocatalytic systems operating in alkaline electrolytes. These include the oxygen reduction reaction (ORR) occurring on catalysts containing Pt, Pd, Ir, Ru, or Ag, the methanol oxidation reaction (MOR) occurring on Pt-containing catalysts, and the ethanol oxidation reaction (EOR) occurring on Ni-Co-Fe alloy catalysts. Each of these catalytic systems is relevant to alkaline fuel cell (AFC) technology, while the ORR systems are also relevant to chlor-alkali electrolysis and metal-air batteries. The use of alkaline media presents advantages both in electrocatalytic activity and in materials stability and corrosion. Therefore, prospects for the continued development of alkaline electrocatalytic systems, including alkaline fuel cells, seem very promising.


Assuntos
Álcoois/química , Álcalis/química , Eletrólitos/química , Metais Pesados/química , Oxigênio/química , Catálise , Eletroquímica , Oxirredução
12.
Langmuir ; 22(25): 10457-64, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129016

RESUMO

Adsorption, dehydrogenation, and oxidation of methanol on Pt(111) in alkaline solutions has been examined from a fundamental mechanistic perspective, focusing on the role of adsorbate-adsorbate interactions and the effect of defects on reactivity. CO has been confirmed as the main poisoning species, affecting the rate of methanol dehydrogenation primarily through repulsive interactions with methanol dehydrogenation intermediates. At direct methanol fuel cell (DMFC)-relevant potentials, methanol oxidation occurs almost entirely through a CO intermediate, and the rate of CO oxidation is the main limiting factor in methanol oxidation. Small Pt island defects greatly enhance CO oxidation, though they are effective only when the CO coverage is 0.20 ML or higher. Large Pt islands enhance CO oxidation as well, but unlike small Pt islands, they also promote methanol dehydrogenation. Perturbations in electronic structure are responsible for the CO oxidation effect of defects, but the role of large Pt islands in promoting methanol dehydrogenation is primarily explained by surface geometric structure.


Assuntos
Álcalis/química , Metanol/química , Platina/química , Adsorção , Monóxido de Carbono/química , Hidrogenação , Oxirredução , Soluções/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...