Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 78: 102427, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38309247

RESUMO

Members of the genus Brucella are the causative agents of brucellosis, a worldwide zoonosis affecting wild and domestic animals and humans. These facultative intracellular pathogens cause long-lasting chronic infections by evolving sophisticated strategies to counteract, evade, or subvert host bactericidal mechanisms in order to establish a secure replicative niche necessary for their survival. In this review, we present recent findings on selected Brucella effectors to illustrate how this pathogen modulates host cell signaling pathways to gain control of the vacuole, promote the formation of a safe intracellular replication niche, alter host cell metabolism to its advantage, and exploit various cellular pathways to ensure egress from the infected cell.


Assuntos
Brucella , Brucelose , Animais , Humanos , Brucella/genética , Interações Hospedeiro-Patógeno , Vacúolos
2.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30126897

RESUMO

Brucellaceae are a group of pathogenic intracellular bacteria with the ability to modulate the host response, both at the individual cell level and systemically. One of the hallmarks of the virulence process is the capacity of the bacteria to downregulate the adaptive and acquired host immune response through a plethora of virulence factors that directly impact several key signaling cascades. PrpA is one of those virulence factors that alters, via its polyclonal B-cell activity, the humoral and cellular immune responses of the host, ultimately favoring the establishment of a chronic infection. Even though PrpA affects B cells, it directly targets macrophages, triggering a response that ultimately affects B lymphocytes. In the present article we report that PrpA is S-palmitoylated in two N-terminal cysteine residues by the host cell and that this modification is necessary for its biological activity. Our results demonstrate that S-palmitoylation promotes PrpA migration to the host cell plasma membrane and stabilizes the protein during infection. These findings add a new mechanism exploited by this highly evolved pathogen to modulate the host immune response.


Assuntos
Brucella abortus/metabolismo , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Lipoilação , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Imunossupressores/metabolismo , Macrófagos/microbiologia , Camundongos , Transporte Proteico , Fatores de Virulência/metabolismo
3.
J Infect Dis ; 217(8): 1257-1266, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29325043

RESUMO

Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.


Assuntos
Proteínas de Bactérias/fisiologia , Brucella/metabolismo , Brucelose/microbiologia , Lipopolissacarídeos/biossíntese , Animais , Brucella/patogenicidade , Gentamicinas , Inflamação/metabolismo , Camundongos , Transporte Proteico , Virulência
4.
PLoS One ; 9(7): e101279, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983999

RESUMO

Brucella, the etiological agent of animal and human brucellosis, is a bacterium with the capacity to modulate the inflammatory response. Cyclic ß-1,2-glucan (CßG) is a virulence factor key for the pathogenesis of Brucella as it is involved in the intracellular life cycle of the bacteria. Using comparative studies with different CßG mutants of Brucella, cgs (CßG synthase), cgt (CßG transporter) and cgm (CßG modifier), we have identified different roles for this polysaccharide in Brucella. While anionic CßG is required for bacterial growth in low osmolarity conditions, the sole requirement for a successful Brucella interaction with mammalian host is its transport to periplasmic space. Our results uncover a new role for CßG in promoting splenomegaly in mice. We showed that CßG-dependent spleen inflammation is the consequence of massive cell recruitment (monocytes, dendritics cells and neutrophils) due to the induction of pro-inflammatory cytokines such as IL-12 and TNF-α and also that the reduced splenomegaly response observed with the cgs mutant is not the consequence of changes in expression levels of the characterized Brucella PAMPs LPS, flagellin or OMP16/19. Complementation of cgs mutant with purified CßG increased significantly spleen inflammation response suggesting a direct role for this polysaccharide.


Assuntos
Brucelose/microbiologia , Inflamação/microbiologia , Esplenomegalia/microbiologia , beta-Glucanas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Brucella abortus/genética , Brucella abortus/metabolismo , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glucosiltransferases/genética , Camundongos
5.
Microb Pathog ; 67-68: 8-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24508400

RESUMO

Brucellosis, a disease caused by the gram-negative bacterium Brucella spp., is a widespread zoonosis that inflicts important animal and human health problems, especially in developing countries. One of the hallmarks of Brucella infection is its capacity to establish a chronic infection, characteristic that depends on a wide repertoire of virulence factors among which are immunomodulatory proteins such as PrpA (encoding the proline racemase protein A or hydroxyproline-2-epimerase), involved in the establishment of the chronic phase of the infectious process that we have previously identified and characterized. We report here that, in vivo, Brucella abortus prpA is responsible for an increment in the B-cell number and in the specific antibody response and that these antibodies promote cell infection. We additionally found that Brucella alters the cytokine levels of IFN-γ, IL-10, TGFß1 and TNFα during the acute phase of the infectious process in a prpA dependent manner.


Assuntos
Isomerases de Aminoácido/imunologia , Proteínas de Bactérias/imunologia , Brucella abortus/enzimologia , Brucelose/imunologia , Brucelose/microbiologia , Isomerases de Aminoácido/genética , Animais , Anticorpos Antibacterianos/imunologia , Linfócitos B/imunologia , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/imunologia , Brucelose/genética , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
6.
J Biol Chem ; 288(28): 20208-16, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23720774

RESUMO

Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen.


Assuntos
Linfócitos B/imunologia , Proteínas de Bactérias/imunologia , Proliferação de Células , Macrófagos/imunologia , Fatores de Virulência/imunologia , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/imunologia , Isomerases de Aminoácido/metabolismo , Animais , Linfócitos B/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Brucella abortus/imunologia , Brucella abortus/metabolismo , Brucella abortus/patogenicidade , Linhagem Celular , Células Cultivadas , Feminino , Macrófagos/parasitologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Miosina não Muscular Tipo IIA/imunologia , Miosina não Muscular Tipo IIA/metabolismo , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Baço/citologia , Baço/imunologia , Baço/metabolismo , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Virulência/imunologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Infect Immun ; 75(1): 379-89, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17088356

RESUMO

Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other alpha-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of E. coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella suis/efeitos dos fármacos , Brucella suis/patogenicidade , Resistência a Medicamentos/genética , Animais , Clonagem Molecular , Feminino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Reação em Cadeia da Polimerase , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...