Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 9(4): 920-929, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32208678

RESUMO

The aldehyde dehydrogenase from Thermoplasma acidophilum was previously implemented as a key enzyme in a synthetic cell-free reaction cascade for the production of alcohols. In order to engineer the enzyme's cofactor specificity from NADP+ to NAD+, we identified selectivity-determining residues with the CSR-SALAD tool and investigated further positions based on the crystal structure. Stepwise combination of the initially discovered six point mutations allowed us to monitor the cross effects of each mutation, resulting in a final variant with reduced KM for the non-native cofactor NAD+ (from 18 to 0.6 mM) and an increased activity for the desired substrate d-glyceraldehyde (from 0.4 to 1.5 U/mg). Saturation mutagenesis of the residues at the entrance of the substrate pocket could eliminate substrate inhibition. Molecular dynamics simulations showed a significant gain of flexibility at the cofactor binding site for the final variant. The concomitant increase in stability against isobutanol and only a minor reduction in its temperature stability render the final variant a promising candidate for future optimization of our synthetic cell-free enzymatic cascade.


Assuntos
Aldeído Desidrogenase , Sítios de Ligação/genética , Simulação de Dinâmica Molecular , NAD/metabolismo , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Coenzimas/química , Coenzimas/metabolismo , NAD/química , Engenharia de Proteínas
2.
Sci Rep ; 9(1): 11754, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409820

RESUMO

Cell-free enzymatic reaction cascades combine the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. The absence of a regulatory cell environment enables direct process control including methods for facile bottleneck identification and process optimization. Within this work, we developed a reduced, enzymatic reaction cascade for the direct production of L-alanine from D-glucose and ammonium sulfate. An efficient, activity based enzyme selection is demonstrated for the two branches of the cascade. The resulting redox neutral cascade is composed of a glucose dehydrogenase, two dihydroxyacid dehydratases, a keto-deoxy-aldolase, an aldehyde dehydrogenase and an L-alanine dehydrogenase. This artificial combination of purified biocatalysts eliminates the need for phosphorylation and only requires NAD as cofactor. We provide insight into in detail optimization of the process parameters applying a fluorescamine based L-alanine quantification assay. An optimized enzyme ratio and the necessary enzyme load were identified and together with the optimal concentrations of cofactor (NAD), ammonium and buffer yields of >95% for the main branch and of 8% for the side branch were achieved.


Assuntos
Alanina/biossíntese , Enzimas/metabolismo , Alanina/metabolismo , Alanina Desidrogenase/metabolismo , Biocatálise , Sistema Livre de Células , Cinética , NAD/metabolismo
3.
FEBS Lett ; 587(17): 2798-805, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23806364

RESUMO

It has been postulated that the ubiquitous (ßα)8-barrel enzyme fold has evolved by duplication and fusion of an ancestral (ßα)4-half-barrel. We have previously reconstructed this process in the laboratory by fusing two copies of the C-terminal half-barrel HisF-C of imidazole glycerol phosphate synthase (HisF). The resulting construct HisF-CC was stepwise stabilized to Sym1 and Sym2, which are extremely robust but catalytically inert proteins. Here, we report on the generation of a circular permutant of Sym2 and the establishment of a sugar isomerization reaction on its scaffold. Our results demonstrate that duplication and mutagenesis of (ßα)4-half-barrels can readily lead to a stable and catalytically active (ßα)8-barrel enzyme.


Assuntos
Aminoidrolases/química , Proteínas Recombinantes de Fusão/química , Aminoidrolases/biossíntese , Aminoidrolases/genética , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli , Isomerismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Engenharia de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
4.
J Am Chem Soc ; 134(30): 12786-91, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22758610

RESUMO

The (ßα)(8)-barrel is among the most ancient, frequent, and versatile enzyme structures. It was proposed that modern (ßα)(8)-barrel proteins have evolved from an ancestral (ßα)(4)-half-barrel by gene duplication and fusion. We explored whether the mechanism of protein folding has remained conserved during this long-lasting evolutionary process. For this purpose, potential primordial (ßα)(8)-barrel proteins were constructed by the duplication of a (ßα)(4) element of a modern (ßα)(8)-barrel protein, imidazole glycerol phosphate synthase (HisF), followed by the optimization of the initial construct. The symmetric variant Sym1 was less stable than HisF and its crystal structure showed disorder in the contact regions between the half-barrels. The next generation variant Sym2 was more stable than HisF, and the contact regions were well resolved. Remarkably, both artificial (ßα)(8)-barrels show the same refolding mechanism as HisF and other modern (ßα)(8)-barrel proteins. Early in folding, they all equilibrate rapidly with an off-pathway species. On the productive folding path, they form closely related intermediates and reach the folded state with almost identical rates. The high energy barrier that synchronizes folding is thus conserved. The strong differences in stability between these proteins develop only after this barrier and lead to major changes in the unfolding rates. We conclude that the refolding mechanism of (ßα)(8)-barrel proteins is robust. It evolved early and, apparently, has remained conserved upon the diversification of sequences and functions that have taken place within this large protein family.


Assuntos
Aminoidrolases/química , Dobramento de Proteína , Thermotoga maritima/enzimologia , Aminoidrolases/genética , Evolução Molecular , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Termodinâmica , Thermotoga maritima/química , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...